參考文獻 |
[1] Mario Paz and William E. Leigh, “Structural Dynamics:theory and computation.” New York : Van Nostrand Reinhold, c1980
[2] Madhujit Mukhopadhyay , “Vibrations, dynamics and Structural systems.” Rotterdam: Brookfield, VT: A. A. Balkema, 2000
[3] Anil K. Chopra, “Dynamics of Structures:Theory and applications to earthquake engineering.” Englewood Cliffs, N.J : Prentice Hall, c1995
[4] Erwin Kreyszig, “Advanced engineering mathematics.” Hoboken, NJ : John Wiley, c2006
[5] Dennis G. Zill,Michael R.Cullen, “Advanced engineering mathematics.” Sudbury, Mass : Jones and Bartlett, c2000
[6] Peter V. O’Neil, “Advanced engineering mathematics.” Boston : PWS-Kent Pub. Co., c1995
[7] H. Rutishauser, “Lectures on Numerical Mathmatics.” Translated by W. Gautschi, Birkhauser, Boston, 1990.
[8] M. J. Maron and R. J. Lopez, “Numerical Analysis: A Practical Approach.” Wadsworth Publishing Company, Belmont, California, 1990.
[9] J. Penny and G. Lindfield, “Numerical Methods Using Matlab.” Ellis Horwood, New York, 1995
[10] R. A. Schapery, ” approximate methods of transform inversion for viscoelast -ic stress analysis” Proc.4th.U.S. Nat.Congress.
[11] E. Detournay and A. H-D. Cheng, “poroelastic response of borehole in a non-Hydrostatic stress field,” Int. J. Rock. Meth. Min. Sci&Geomech. Abstr, 25 (1988) 171-182.
[12] H.S. Chohan, R.S. Sandhu and W.E. Wolfe, ”A semi-discrete procedure for dynamic response analysis of saturated soils.” Int. J. Numer. Analyt. Meth. Geomech., 15 (1991) 471-496.
[13] J.R. Booker. And J.C. Small, "A method of computing the consolidation behavior of layered soils using direct numerical inversion of laplace transform,” Int. J. Numer. Analyt. Meth. Geomech., 11 (1987) 363-380
[14] S.L. Chen, L.M. Zhang and L.Z Chen,“ Consolidation of a finite transverse -ly isdropic soil layer on a rough impervious base.” Journal of Engrg. Mech. ASCE, 131 (2005) 1279-1290.
[15] R.K.N.O. Rajapakse and T. Senjuntichai,” An direct boundary integral equation method for poroelasticity."Int. J. Numer. Analyt. Meth. Geomech., 19 (1995) 587-614
[16] D. P. Gaver, Jr., “Observing stochastic processes, and approximate transform inversion.” Operational Res., 14 (1966) 444-459
[17] H. Stehfest, Comm. Acm., 13 (1970) 47..
[18] E. L. Post, “Generalized differentiation.” Trans. Amer. Meth. Soc., 32 (1960) 723-781
[19] D. W. Widder, “The inversion of the Laplace integral and the related moment problem.” Amer. Meth. Soc. Trans 36 (1934) 107-200
[20] D. W. Widder, The Laplace Transform. Princeton University Press, Princetion, NJ. (1946)
[21] S. Sykore, V. Bortollotti and P. Fautazzini, “PERFIDI: parametrically enabled relaxation filters winth double and multiple inversion.” Magnetic Resonance Imaging 25 (2007) 529-532
[22] C. Montella, “ LSV modeling of electrochemical systems through numerical inversion of inversion of Laplace transform. I-The GS-LSV algorithm.” J. Electroamalytical chemistry, 614 (2008) 121-130.
[23] B.davies and B Martin, “Numerical inversion of the Laplace transform: a survey and comparision of methods.” J. Computational Plrys., 33 (1979) 1-32
[24] 陳正豪,「對Gaver-Stehfest公式之研究與探討」,碩士論文,國立中央大學
|