博碩士論文 963202048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:156 、訪客IP:44.213.75.78
姓名 劉隆運(Long-yun Liou)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物最終處置場回填材料之配方與工程特性研究
(The Engineering Character of Backfill Material for Low-Level Radwaste Disposal Site)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將以台東樟原村日興土與美國懷俄明州BH膨潤土,混合台東地區硬頁岩碎石級配料,調配成不同體積比例之膨潤土-碎石配方之低放廢棄物最終處置場回填材料,而後進行基本材料性質、改良式夯實、自由回脹應變、定體積回脹壓力、水力傳導度等試驗,依據試驗結果歸納其功能特性,一方面尋求回填材料之最佳配方,另一方面掌握本土回填材料之工程性質,並與國際間使用之回填材料加以比較。
研究結果顯示,若以日興土或BH膨潤土加入碎石混合製成回填材料,可兼具低水力傳導度、適當回脹量及良好工作度與夯實特性等功能。二種膨潤土相較,BH膨潤土由於塑性較高,所製成回填材料之水力傳導度較日興土回填材為低,回脹潛能遠較日興土回填材高。膨潤土體積比例變化為影響回填材料之工程性質的主要因素,體積比例愈高則其水力傳導度愈低而回脹潛能愈高。於選擇低放廢棄物處置場之回填材料配方時,物理性質的考量應以低水力傳導度、不超額回脹壓力、及高均勻性而不易析離等為主要為考慮因素。
摘要(英) Zhishin clay and black hill bentonite were used as candidate clay materials for backfills of low-level radwaste disposal site. Various amounts of the clay were mixed with crushed Argillite obtained from Taitung to prepare for backfill material mixtures. These mixtures were tested for material characteristics, compaction properties, free swelling, swelling pressure, and hydraulic conductivity to assess their potential as backfill materials, with emphasis on their long-term stability for radwaste containment. Based on the evaluations, formulation of the backfill material is developed. Also, the properties of the backfill material are compared with those used by other countries to assure suitability.
The results indicate : (1) black hill bentonite that the plastic index is higher than Zhishin clay, so the hydraulic conductivity of black hill backfill material is lower than Zhishin backfill material, and the swelling properties of black hill bentonite is higher than Zhishin clay. (2) the bentonite volume ratio is higher, the hydraulic conductivity getting lower and the swelling properties getting higher.
The physical properties of the considerations should be based on the low hydraulic conductivity not the excess swelling pressure, when choosing low-level waste disposal sites formulations of backfill materials.
關鍵字(中) ★ 低放廢棄物
★ 回填材料
★ 水力傳導度
★ 回脹潛能
關鍵字(英) ★ low-level radioactive waste
★ backfill material
★ hydraulic conductivity
★ swelling potential
論文目次 圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1研究動機 1
1.2 研究目的 2
1.3 研究方法與範圍 2
1.4 試驗流程 3
第二章 文獻回顧 5
2.1 低放射性廢棄物 5
2.1.1 低放射性廢棄物來源 5
2.1.2 我國低放射性廢棄物貯存設施計畫之需求性 5
2.1.3 低放射性廢棄物最終處置 6
2.1.4 國內低放最終處置場回填設計概念 12
2.2 低放廢棄物最終處置多重障壁概念 14
2.3 低放回填材料所需具備之功能 14
2.4 膨潤土礦物的基本特性 16
2.4.1 膨潤土礦物的結晶構造 16
2.4.2 膨潤土與水的作用 17
2.4.3 分散及絮凝結構 18
2.5 黏土回脹潛能 19
2.5.1 回脹發生的機制 19
2.5.2 回脹行為模式 19
2.5.3 影響回脹潛能的因素 22
2.6 水力傳導度理論 28
2.6.1 達西定律(Darcy’s Law) 28
2.6.2 達西定律之適用性 28
2.6.3 影響水力傳導度的因素 30
第三章 研究計畫 38
3.1試驗材料 38
3.1.1膨潤土材料 38
3.1.2粒料硬頁岩 39
3.2材料基本土壤力學性質分析方法 40
3.2.1自然含水量 40
3.2.2比重試驗 40
3.2.3粒徑分析試驗 40
3.2.4阿太堡限度試驗 40
3.2.5活性 40
3.3材料準備 41
3.4改良式夯實試驗 45
3.5回脹試驗 46
3.5.1回脹試驗方法選擇 46
3.5.2回脹試體製作 46
3.5.3 自由回脹應變試驗 49
3.5.4定體積回脹壓力試驗 52
3.6水力傳導性質量測 55
3.6.1試驗方法選擇 55
3.6.2剛性壁水力傳導度試驗 56
3.6.3 柔性壁水力傳導度試驗 62
第四章 試驗結果與分析 73
4.1基本材料性質分析 73
4.2夯實特性 75
4.2.1不同膨潤土及膨潤土體積比例對夯實特性之影響 75
4.2.2 夯實試體中有效黏土乾單位重及有效孔隙比 78
4.3 回脹潛能 82
4.3.1自由回脹應變 82
4.3.2 定體積回脹壓力 86
4.4水力傳導度 94
4.4.1剛性壁水力傳導度試驗 94
4.4.2柔性壁水力傳導度試驗 104
4.4.3有效應力對於水力傳導度之影響 106
4.4.4膨潤土體積比例與回脹壓力及水力傳導度間之關係 107
4.5 回填材料之選取 110
第五章 結論與建議 113
5.1結論 113
5.2建議 115
參考文獻 116
參考文獻 田永銘、李德河,(1994),「黏土質材料的吸水回脹速率」,中國土木水利工程學刊,第六卷,第二期,第223-232頁。
台灣電力公司,(2008)低放射性廢棄物最終處置設施,概念設計(A版)。
台灣電力公司,(2007)低放射性廢棄物最終處置計畫書(修定版)。
台灣電力公司,(2004)低放射性廢棄物最終處置計畫書。
沈茂松,(1988)實用土壤力學實驗,增訂第七版,文笙書局。
柯甫松,(1997)「放射性廢料處置場回填材料之工程性質」,碩士論文,國立中央大大學土木工程研究所,中壢。
陳志霖,(2000),「放射性廢料處置場緩衝材料之力學性質」,國立中央大學土木工程系碩士論文,中壢。
陳文泉,(2004)「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
鄒惠如,(2005)「最終處置場黏土障壁材料之傳輸行為研究」,碩士論文,國立中央大學土木工程研究所,中壢。
趙杏媛、張有瑜,(1990),黏土礦物與黏土礦物分析,海洋出版社,北京。
緒方信英、小峯秀雄、申島均、長沢達朗、石井卓,(1994)「所定の透氷係数を有するべントナイト混合土の配合設定方法」,粘土科學,第34卷,第2号,第95-101頁(in Japan)。
施國欽,(2005),大地工程學(一)土壤力學篇,第五版,文笙書局。
劉東山,蔡昭明,(1993),放射性廢料管理,曉園出版社,台北。
劉慧玲,(2001)「台東樟原黏土資源之有機黏土備置研究」,碩士論文,國立成功大學資源工程學系,臺南。
鄭文龍、吳偉康,(1994)「紅土礫石材料之夯實特性及施工控制」,土木水利,第二十一卷,第一期,第17-30頁。
Ahn,H. S. and Jo, H. Y. (2009). “Influence of exchangeable cations on hydraulic conductivity of compacted bentonite.” Applied Clay Science, 44, 144-150.
Ashayeri, I. and Yasrebi, S. (2009). “Free-Swell and Swelling Pressure of Unsaturated Compacted Clays; Experiments and Neural Networks Modeling.” Geotechnical and Geological Engineering, 27(1), 137-153.
Arnold, B. W., Knowlton R. G., Schelling F. J., Mattie P. D., Cochran, J. C. and JowH. N. (2007). “Taiwan industrial cooperation program transfer for low-level radioactive waste final disposal-phase I ” SAND2007-0131, Sandia National Laboratories, Albuquerque, New Mexico.
Borgesson, L., Johannesson, L. E. and Gunnarsson, D.(2003), “Influence of Soil Structure Heterogeneities on the Behaviour of Backfill Materials Based on Mixtures of Bentonite and Crushed Rock”, Applied Clay Science 23: 121-131.
Benson, C. H., Zhai, H., and Wang, X. (1994). ”Estimating Hydraulic Conductivity of Compacted Clay Liners,” Journal of Geotechnical Engineering, ASCE, 120, 366-387.
Boynton, S. S., and Daniel, D. E., (1985) “Hydraulic Conductivity Test on Compacted Clay.” Journal of Geotechnical Engineering, ASCE, 111, 465-477.
Chung, R. M. and Yokel, F. Y. (1982). “Reference Laboratory Testing for Backfill.” Scientific Basis for Nuclear Waste Management, 379-387.
Dixon,D.A., Gray,M.N., and Thomas.A.W. (1984). “A Study of the Compaction Properties of Potential Clay-Sand Buffer Mixtures for Use in Nuclear Fuel Waste Disposal.” Engineering Geology, 21, 247-255.
Engelhardt, I. and Finsterle, S. (2003). “Thermal-Hydraulic Experiments with Bentonite/Cruched Rock Mixtures and Estimation of Effective parameters by Inverse Modeling.” Applied Clay Science, 23, 111-120.
Holopainen, P. (1985). “Crushed Aggregate-Bentonite Mixtures as Backfill Material for Repositories of Low-and Intermediate Level Radioactive.” Engineering Geology, 21, 239-245.
Han, K., Heinonen, W. J. and Bonne A. (1997), “Radioactive Waste Disposal:Global Experience and Challenges,” IAEA Bulletin, 39, 33-41.
Haverkamp, B. and E. Biurrun (2005) : Safety Assessment and justification of the proposed solution for closure. DBE TECHNOLOGY Report DBE-RCH-TSK-07.
ISRM,(1981). Rock Characterization, Testing and Monitoring, ISRM suggested methods. ed. E.T. Brown.publ. Pergamon Press, Oxford, pp. 211
Komine, H. (2004). “Simplified Evaluation for Swelling Characteristics of Bentonites.” Engineering Geology, 71, 3-4.
Komine, H. (2004).“Simplified Evaluation on Hydraulic Conductivities of Sand-Bentonite Mixture Backfill.”Applied Clay Science, 26, 1-4, 13-19.
Lee, O. J., Cho, W. J. and Chun K. S. (1999). “Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository.” Journal of Korean Nuclear Society, 31(2), 139-150.
Lambe, T. W., (1958) “The Engineering Behavior of Compacted Clay.” Journal of the Soil Mechanics and Foundations Division., ASCE, 84, 1654, 1-35
Mishra, A. K., Dhawan, S., and Rao, S. M. (2008). “Analysis of Swelling and Shrinkage Behavior of Compacted Clays.” Geotechnical and Geological Engineering, 26(3), 289-298.
Moon, S., Nam, K., Kim, J. Y., Hwan, S. K., Chung, M. (2008). “Effectiveness of Compacted Soil Liner as a Gas Barrier Layer in the Landfill Final Cover System.” Waste Management, 28(10), 1909-1914.
Mitchell, J.K. (1993) Fundamentals of Soil Behavior. 2nd Edition. John Wiley & Sons Inc., NY.
Naser A. Al-Shayea., (2001) “The Combined Effect of Clay and Moisture Content on the Behavior of Remolded Unsaturated Soils. ” Engineering Geology, 62(4), 319-342.
Onoue, A., Horie,Y., Ishii,T., Ogata, N. and Komine, H. (1993) “Consolidation and Swelling Properties of Bentonite-Sand Mixture for Sealing Low-Level Radioactive Waste Repositories. ” Trans, 12th Ind. Conf.on SMIRT, Session N03/2,351-356.
Ogata, N. and Komine, H. (1993) “Permeability Changes of Bentonite-Sand Mixture Before and After Swelling. ” Trans, 12th Ind. Conf.on SMIRT, Session N03/3, 357-362.
Pusch, R., (2001).The Buffer and Backfill Handbook Part 2: Materials and Techniques, SKB TR-02-12.
Pusch, R., (1994): Waste Disposal in Rock, Developments in Geotechnical Engineering, 76. Elsevier Publ. Co.
Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. (1996). “Swelling Behaviour of Soil-Bentonite Mixtures.” Canadian Geotechnical Journal, 33, 808-814.
Shelley, T. L., and Daniel, D. E., (1993) “Effect of Gravel on Hydraulic Conductivity of Compacted Soil Liners.” Journal of Geotechnical Engineering, ASCE, 119, 54-68.
Seed, H. B., Woodware, R. J., and Lundgren, R., (1962) “Prediction of Swelling Potential for Compacted Clays.” Journal of the Soil Mechanics and Foundation Engineering , ASCE, 88, 53-87.
Taylor, R.K. and Cripps, J.C., (1987), “Weathering Effects: Slopes in Mudrocks and Over-Consolidated Clay.” Chapter 13, Edited by Anderson M.G. and Richard K.S., John Wiley & Sons.
Yong R. N., and Benno, P. W. (1975). Soil Properties and Behavior Elsevier, NewYork.
指導教授 黃偉慶(Wei-hsing Huang) 審核日期 2010-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明