博碩士論文 90346003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.119.160.242
姓名 范姜仁茂(Jen-Mao FanChiang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 臭氧化降解蒽醌染料水溶液之研究
(Degradation of anthraquinone dye in aqueous solution by ozonation)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的係利用半批次式反應槽,探討蒽醌染料水溶液的臭氧化降解,並評估不同的臭氧化操作參數包含染料初始濃度、臭氧供應流率和初始pH,對色度、染料、TOC的去除效能。同時,鑑定分析染料降解過程可能產生的中間產物,探討染料可能的臭氧化降解途徑。最後則評估染料水溶液藉臭氧化所提升的生物可分解性。
實驗結果顯示,反應性藍色19號(Reactive Blue 19, RB-19)可藉臭氧化處理而降解。在臭氧化實驗中,色度與染料之去除,均比TOC去除快且完全。不過,提高染料初始濃度,會顯著降低染料的去除效率。此外,增加臭氧供應流率則對色度、染料、TOC之去除,均有正面的影響,特別是對TOC的去除最為明顯。在初始pH影響方面,色度去除的速率常數和效率,在初始pH為酸性的條件下達到最高。然而染料和TOC的去除,則以初始pH為鹼性的條件較有效率,此可能係受到氧化力較強且無選擇性的氫氧自由基氧化反應所致。
RB-19經直接臭氧氧化反應後,由UV/VIS和FTIR光譜分析的結果顯示,其蒽醌結構、氮基連結基和氨基受到臭氧所破壞。LC-MS與GC-MS分析的結果則分別指出,一些有機酸(例如臨苯二甲酸)和1,3-吲酮(1,3-indanone)可能是主要的降解產物。因此,RB-19可能的降解途徑,視氨基或氮基連結基何者首先被臭氧破壞而定。
基本上,臭氧化處理RB-19染料水溶液具有提高其BOD5/COD比值的潛力,因此可提升生物可分解性。另一方面,臭氧化處理亦有降低染料水溶液的Microtox毒性,和增加污泥比攝氧率(SOUR)的效果。由生物降解篩選試驗的驗證顯示,臭氧化處理可大幅提高生物降解RB-19染料水溶液的DOC去除率。
摘要(英) The objective of this study was to investigate the degradation of anthraquinone dyes in aqueous solution by ozonation using a semi-batch reactor. The effects of various operating parameters, such as initial dye concentrations, ozone feed rates and initial pH, on performance of color, dye, and TOC removal were evaluated. Also, possible dye degradation products were identified to investigate degradation pathways. Finally, the biodegradability enhancement of dye solution by ozonation was assessed.
The experimental results showed that Reactive Blue 19 (RB-19) could be degraded by ozonation. The color and dye removal were more rapid and complete than TOC removal in all ozonation tests. However, increasing the initial RB-19 concentration had significant effect on decreasing the elimination of RB-19. In addition, increasing ozone feed rates had all positive effects on color, dye and TOC removal, particularly on TOC diminution. Also, the rate constant and efficiency of color removal were highest at initial acidic pH condition, but dye and TOC removal were more effective at the basic pH value likely due to more powerful and non-selective hydroxyl radical oxidation.
The results of UV/VIS and FTIR spectra showed that the anthraquinone structures, nitrogen linkages and amino groups of RB-19 were destroyed under direct ozone reaction. The identification by LC-MS and GC-MS analyses indicated that some organic acids (e.g., phthalic acids) and 1,3-indanone could be the primary degradation products, respectively. Thus, the possible degradation pathways, which count on the initial destruction of either amino groups or C–N–Aromatic linkages, were proposed
Basically, ozonation was confirmed to have potential to increase BOD5/COD ratio of RB-19 solution. On the other hand, ozonation also decreased Microtox toxicity and increased SOUR of RB-19 solution. The enhanced biodegradability was validated by screen tests, which revealed an improved DOC removal by biodegradation.
關鍵字(中) ★ 生物可分解性
★ 礦化
★ 降解途徑
★ 臭氧化
★ 蒽醌染料
關鍵字(英) ★ biodegradability
★ mineralization
★ degradation pathways
★ ozonation
★ anthraquinone dye
論文目次 Chinese Abstract I
English Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VI
List of Tables IX
Nomenclature X
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objective and Scope 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Anthraquinone Dyes 5
2.2 Biological Decolorization and Removal of Anthraquinone Dyes 9
2.3 Fundamentals of Ozone Reaction in Water 12
2.3.1 Direct reaction 15
2.3.2 Indirect reaction 17
2.4 Factors affecting Ozonation Performance of Dye-containing Wastewaters 21
2.5 Products and Degradation Pathways of Dyes during Ozonation 29
2.6 Biodegradability Enhancement of Wastewaters by Ozonation 35
2.6.1 The impact of ozone oxidation on biodegradability of organics 37
2.6.2 The application of ozonation for biodegradability enhancement of wastewaters 40
2.6.3 The potential of integrating pre-ozonation and biological oxidation processes 43
CHAPTER 3 MATERIALS AND METHODS 47
3.1 Materials 47
3.2 The Research Flowchart and Experimental Design 50
3.3 Experimental Set-up 53
3.4 Analytical Methods 56
CHAPTER 4 RESULTS AND DISCUSSION 61
4.1 Oxidative Degradation of Anthraquinone Dyes by Ozonation 61
4.1.1 Decolorization and transformation of RB-19 dye 61
4.1.2 Degradation and transformation of DB-14 dye 64
4.1.3 Comparison of the effect of ozonation on RB-19 and DB-14 dye 66
4.2 Effects of Ozonation Parameters on Degradation of RB-19 Dye 71
4.2.1 Effects of initial dye concentrations 72
4.2.2 Effects of ozone feed rates 74
4.2.3 Effects of initial pH 76
4.2.4 Evaluation of ozone consumption 87
4.3 Decomposition Products and Degradation Pathways of RB-19 Dye by Ozonation 98
4.3.1 The destruction of RB-19 dye chromophore 98
4.3.2 The transformation of functional groups on RB-19 dye 100
4.3.3 Identification of ozonation products of RB-19 dye 102
4.3.4 Degradation pathways of RB-19 dye under direct ozone reaction 105
4.4 Evaluation of Ozone Induced Biodegradability Enhancement of RB-19 Dye Solution 109
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 121
5.1 Conclusions 121
5.2 Recommendations 123
REFERENCES 124
APPENDIXES A-1
A Photographs of Ozonation Apparatus A-1
B Derivation of AOS Definition Equation A-2
參考文獻 Adams, C. D. and S. Gorg, “Effect of pH and gas-phase ozone concentration on the decolorization of common textile dys,” J. Environ. Eng., 128, pp. 293-298 (2002).
Adams, C. D., P. A. Scanlan, and N. D. Secrist, “Oxidaiton and biodegradability enhancement of 1,4-dioxane using hydrogen peroxide and ozone,” Environ. Sci. Technol., 28, pp. 1812-1818 (1994).
Adams, C. D., R. A. Cozzens, and B. J. Kim, “Effects of ozonation on the biodegradability of substituted phenols,” Water Res., 31, pp. 2655-2663 (1997).
Alexander, M., “Nonbiodegradable and other recalcitrant molecules,” Biotechnol. Bioeng., 15, pp. 611-647 (1973).
Al-Kdasi, A., A. Idris, K. Saed, and C. T. Guan, “Treatment of textile wastewater by advanced oxidation processes: a review,” Global Nest: the Int. J., 6, pp. 222-230 (2004).
Allegre, C., M. Maisseu, F. Charbit, and P. Moulin, “Coagulation-flocculation-decantation of dye house effluents: concentrated effluents,” J. Hazard. Mater., 116, pp. 57-64 (2004).
Al Momani, F., “Biodegradability enhancement of 2,4-dichlorophenol aqueous solution by means of photo-Fenton reaction,” Environ. Eng. Sci., 23, pp. 722-733 (2006).
Alvares, A. B. C., C. Diaper, and S. A. Parsons, “Partial oxidation by ozone to remove recalcitrance from wastewaters: a review,” Environ. Technol., 22, pp. 409-427 (2001).
Arslan-Alaton, I. and A. E. Caglayan, “Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent,” Ecotox. Environ. Safe., 63, pp. 131-140 (2006).
Avramescu, S. M., N. Mihalache, C. Bradu, M. Neata, and I. Udrea, “Catalytic ozonation of Acid Red 88 from aqueous solution,” Catal. Lett., 129, pp. 273-280 (2009).
Balcioğlu, I. A. and I. Arslan, “Partial oxidation of reactive dyestuffs and synthetic textile dye-bath by the O3 and O3/H2O2 processes,” Water Sci. Technol., 43, pp. 221-228 (2001).
Banat, I. M., P. Nigam, D. Singh, and R. Marchant, “Microbial decolorization of textile-dye-containing effluents: a review,” Bioresour. Technol., 58, pp. 217-227 (1996).
Baughman, G. L. and E. J. Weber, “Transformation of dyes and related compounds in anoxic sediment: kinetics and products,” Environ. Sci. Technol., 28, pp. 267-276 (1994).
Beltrán, F. J., J. F. García-Araya, and P. Álvarez, “Impact of chemical oxidation on biological treatment of a primary municipal wastewater. 1. effects on COD and biodegradability,” Ozone-Sci. Eng., 19, pp. 495-512 (1997a).
Beltrán, F. J., J. F. García-Araya, and P. Álvarez, “Impact of chemical oxidation on biological treatment of a primary municipal wastewater. 2. effects of ozonation on kinetics of biological oxidation,” Ozone-Sci. Eng., 19, pp. 495-512 (1997b).
Beltrán, F. J., J. F. García-Araya, and P. Álvarez, “Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 2. ozonation followed by biological oxidation,” J. Chem. Technol. Biot., 74, pp. 884-890 (1999).
Beltrán, F. J., P. Álvarez, E. M. Rodríguez, J. F. García-Araya, and J. Rivas, “Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation,” Biotechnol. Progr., 17, pp. 462-467 (2001).
Beltrán, F. J., Ozone reaction kinetics for water and wastewater systems, Lewis Publishers, New York, USA (2004).
Beltran-Heredia, J., J. Torregrosa, J. R. Dominguez, and J. Garcia, “Aerobic biological treatment of black olive washing wastewaters: effect of an ozonation stage,” Process Biochem., 35, pp. 1183-1190 (2000).
Benitez, F. J., J. Beltran-Heredia, J. Torregrosa, and J. L. Acero, “Treatment of olive mill wastewaters by ozonation, aerobic degradation and the combination of both treatments,” J. Chem. Technol. Biot., 74, pp. 639-646 (1999).
Benitez, F. J., J. L. Acero, J. Garcia, and A. I. Leal, “Purification of cork processing wastewaters by ozone, by activated sludge, and by their two sequential applications,” Water Res., 37, pp. 4081-4090 (2003).
Bertanza, G., C. Collivignarelli, and R. Pedrazzani, “The role of chemical oxidation in combined chemical-physical and biological processes: experiences of industrial wastewater treatment,” Water Sci. Technol., 44, pp. 109-116 (2001).
Bijan, L. and M. Mohseni, “Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds,” Water Res., 39, pp. 3763-3772 (2005).
Borchert, M. and J. A. Libra, “Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors,” Biotechnol. Bioeng., 75, pp. 313-321 (2001).
Brenner, A., S. Belkin, and A. Abeliovich, “Development of a pretreatment program to improve biological treatability of high strength and toxic industrial wastewater,” Water Sci. Technol., 29, pp. 29-37 (1994).
Bühler, R. E., J. Staehelin, and J. Hoginé, “Ozone decomposition in water studied by pulse radiolysis. 1. HO2/O2- and HO3/O2- as intermediates,” J. Phys. Chem., 88, pp. 2560-2564 (1984).
Camp, S. R. and P. E. Sturrock, “The identification of the derivatives of C.I. Reactive Blue 19 in textile wastewater,” Water Res., 24, pp. 1275-1278 (1990).
Chang, E. E., H. J. Hsing, P. C. Chiang, M. Y. Chen, and J. Y. Shyng, “The chemical and biological characteristics of coke-oven wastewater by ozonation,” J. Hazard. Mater., 156, pp. 560-567 (2008).
Chen, Y. H., C. Y. Chang, S. F. Huang, C. Y. Chiu, D. Ji, N. C. Shang, Y. H. Yu, P. C. Chiang, Y. Ku, and J. N. Chen, “Decomposition of 2-naphthalenesulfonate in aqueous solution by ozonation with UV radiation,” Water Res., 36, pp. 4144-4154 (2002).
Chu, W. and C. W. Ma, “Quantitative prediction of direct and indirect dye ozonation kinetics,” Water Res., 34, 3153-3160 (2000).
Ciardelli, G., G. Capannelli, and A. Bottino, “Ozone treatment of textile wastewaters for reuse,” Water Sci. Technol., 44, pp. 61-68 (2001).
Contreras, S., M. Rodríguez, F. Al Momani, C. Sans, and S. Esplugas, “Contribution of the ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol,” Water Res., 37, pp. 3164-3171 (2003).
Correia, V. M., T. Stephenson, and S. Judd, “Characterisation of textile wastewaters: a review,” Environ. Technol., 15, pp. 917-929 (1994).
Deng, D., J. Guo, G. Zeng, and G. Sun, “Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11,” Int. Biodeter. Biodegr., 62, pp. 263-269 (2008).
Dignac, M. F., S. Derenne, P. Ginestet, A. Bruchet, H. Knicker, and C. Largeau, “Determination of structure and origin of refractory organic matter in bio-epurated wastewater via spectroscopic methods. Comparison of conventional and ozonation treatments,” Environ. Sci. Technol. 34, pp. 3389-3394 (2000).
Doğruel, S., F. Germirli-Babuna, I. Kabdaşli, G. Insel, and D. Orhon, “Effect of stream segregation on ozonation for the removal of significant COD fractions from textile wastewater,” J. Chem. Technol. Biot., 78, pp. 6-14 (2003).
Dogruel, S., E. A. Genceli, F. Germirli-Babuna, and D. Orhon, “Ozonation of nonbiodegradable organics in tannery wastewater,” J. Enviorn. Sci. Heal. A, 39, pp. 1705-1715 (2004).
Doğruel, S., E. Dulekgurgen, and D. Orhon, “Effect of ozonation on chemical oxygen demand fraction and color profile of textile wastewaters,” J. Chem. Technol. Biot., 81, pp. 426-432 (2006).
dos Santos, A. B., I. A. E. Bisschops, F. J. Cervantes, J. B. van Lier, “The transformation and toxicity of anthraquinone dyes during thermophilic (55°C) and mesophilic (30°C) anaerobic treatments,” J. Biotechnol., 115, pp. 345-353 (2005).
Dulekgurgen, E., S. Doğruel, Ö. Karahan, and D. Orhon, “Size distribution of wastewater COD fractions as an index for biodegradability,” Water Res., 40, pp. 273-282 (2006).
Eckenfelder, W. W., Industrial water pollution control, McGraw-Hill, New York, USA (2000).
Eichlerová, I., L. Homolka, O. Benada, O. Kofroňová, T. Hubálek, and F. Nerud, “Decolorization of Orange G and Remazol Brilliant Blue R by the white rot fungus Dichomitus squalens: toxicological evaluation and morphological study,” Chemosphere, 69, pp. 795-802 (2007).
Epolito, W. J., Y. H. Lee, L. A. Bottomley, and S. G. Pavlostathis, “Characterization of the textile anthraquinone dye Reactive Blue 4,” Dyes Pigments, 67, pp. 35-46 (2005).
Fábián, I., “Mechanistic aspects of ozone decomposition in aqueous solution,” Prog. Nucl. Energ., 29, pp. 167-174 (1995).
Fanchiang, J. M., D. H. Tseng, G. L. Guo, and H. J. Chen, “Ozonation of complex industrial park wastewater: effects on the change of wastewater characteristics,” J. Chem. Technol. Biot., 84, pp. 1007-1014 (2009).
Fontenot, E. J., M. I. Beydilli, Y. H. Lee, and S. G. Pavlostathis, “Kinetics and inhibition during the decolorization of reactive anthraquinone dyes under methanogenic conditions,” Water Sci. Technol., 45, pp. 105-111 (2002).
Forgacs, E., T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environ. Int., 30, pp. 953-971 (2004).
Fu, Y. and T. Viraraghavan, “Fungal decolorization of dye wastewaters: a review,” Bioresour. Technol., 79, pp. 251-262 (2001).
Gharbani, P., S. M. Tabatabaii, and A. Mehrizad, “Removal of Congo Red from textile wastewater by ozonation,” Int. J. Envrion. Sci. Tech., 5, pp. 495-500 (2008).
Gilbert, E., “Investigations on the change of biological degradability of single substances induced by ozonaiton,” Ozone-Sci. Eng., 5, pp. 137-149 (1983).
Gilbert, E., “Biodegradability of ozonation products as a function of COD and DOC elimination by example of substituted aromatic substances,” Water Res., 21, pp. 1273-1278 (1987).
Glaze, W. H., Chemistry of ozone, by-products and their health effects. Ozonation: research advances and research Needs. AWWARF, Denver, Colorado, USA (1986).
Goi, A., M. Trapido, and T. Tuhkanen, “A study of toxicity, biodegradability, and some by-products of ozonised nitrophenols,” Adv. Environ. Res., 8, pp. 303-311 (2004).
Gökçen, F. and T. A. Özbelge, “Enhancement of biodegradability by continuous ozonation in Acid Red-151 solution and kinetic modeling,” Chem. Eng. J., 114, pp. 99-104 (2005).
Gökçen, F. and T. A. Özbelge, “Pre-ozonation of aqueous azo dye (Acid Red-151) followed by activated sludge process,” Chem. Eng. J., 123, pp. 109-115 (2006).
Golob, V. and L. Tušek, “VIS absorption spectrophotometry of disperse dyes,” Dyes Pigments, 40, pp. 211-217 (1999).
Gottschalk, C., J. A. Libra, and A. Saupe, Ozonation of water and waste water: a practical guide to understanding ozone and its application, Wiley-VCH, Weinheim, Germany (2000).
Hao, O. J., H. Kim, and P. C. Chiang, “Decolorization of wastewater,” Crit. Rev. Env. Sci. Tec., 30, pp. 449-505 (2000).
Hassan, M. M. and C. J. Hawkyard, “Decolourisation of aqueous dyes by sequential oxidation treatment with ozone and Fenton’s reagent,” J. Chem. Technol. Biot., 77, pp. 834-841 (2002).
He, Z., S. Song, H. Zhou, H. Ying, and J. Chen, “C.I. Reactive Black 5 decolorization by combined sonolysis and ozonation,” Ultrason. Sonochem., 14, pp. 298-304 (2007).
He, Z., L. Lin, S. Song, M. Xia, L. Xu, H. Ying, and J. Chen, “Mineralization of C.I. Reactive Blue 19 by ozonation combined with sonolysis: performance optimization and degradation mechanism,” Sep. Purif. Technol., 62, pp. 376-381 (2008).
Helble, A., W. Schlayer, P. A. Liechti, R. Jenny, and C. H. Möbius, “Advanced effluent treatment in the pulp and paper industry with a combined process of ozonation and fixed bed biofilm reactors,” Water Sci. Technol., 40, pp. 343-350 (1999).
Hiromatsu, K., Y. Yakabe, K. Katagiri, and T. Nishihara, “Prediction for biodegradability of chemicals by an empirical flowchart,” Chemosphere, 41, pp. 1749-1754 (2000).
Hsing, H. J., P. C. Chiang, E. E. Chang, and I. S. Li, “Effects of select parameters on decolorization and decomposition of Acid Orange 6,” Environ. Eng. Sci., 23, pp. 824-834 (2006a).
Hsing, H. J., P. C. Chiang, E. E. Chang, and Y. S. Li, “Evaluation of decolorization, mineralization, and toxicity reduction of Tropaeolin O in water by ozonation with UV irradiation,” Ozone-Sci. Eng., 28, pp. 9-16 (2006b).
Hsing, H. J., P. C. Chiang, E. E. Chang, and M. Y. Chen, “The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study,” J. Hazard. Mater., 141, pp. 8-16 (2007).
Hsu, Y. C., Y. F. Chen, and J. H. Chen, “Decolorization of dye RB-19 solution in a continuous ozone process,” J. Environ. Sci. Heal. A, 39, pp. 127-144 (2004).
Husain, Q., “Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review,” Crit. Rev. Biotechnol., 26, pp. 201-221 (2006).
Ince, N. H. and G. Tezcanlí, “Reactive dyestuff degradation by combined sonolysis and ozonation,” Dyes Pigments, 49, pp. 145-153 (2001).
Itoh, K., C. Yatome, and T. Ogawa, “Biodegradation of anthraquinone dyes by Bacillus subtilis,” B. Environ. Contam. Tox., 50, pp. 522-527 (1993).
Itoh, K., Y. Kitade, and C. Yatome, “A pathway for biodegradation of an anthraquinone dye, C.I. Disperse Red 15, by a yeast strain Pichia anomala,” B. Environ. Contam. Tox., 56, pp. 413-418 (1996).
Itoh, K., Y. Kitade, and C. Yatome, “Oxidative biodegradation of an anthraquinone dye, Pigment Violet 12, by Coriolus versicolor,” B. Environ. Contam. Tox., 60, pp. 786-790 (1998).
Jäger, I., C. Hafner, and K. Schneider, “Mutagenicity of different textile dye products in Salmonella typhimurium and mouse lymphoma cells,”Mutat. Res.-Gen. Tox. En., 561, pp. 35-44 (2004).
Jhunghanns, C., G. Krauss, and D. Schlosser, “Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes,” Bioresour. Technol., 99, pp. 1225-1235 (2008).
Jochimsen, J. C. and M. R. Jekel, “Partial oxidation effects during the combined oxidative and biological treatment of separated streams of tannery wastewater,” Water Sci. Technol., 35, pp. 337-345 (1997).
Karahan, Ö, S. Dogruel, E. Dulekgurgen, and D. Orhon, “COD fractionation of tannery wastewaters: particle size distribution, biodegradability and modeling,” Water Res., 42, pp. 1083-1092 (2008).
Khadhraoui, M., H. Trabelsi, M. Ksibi, S. Bouguerra, and B. Elleuch, “Discoloration and detoxicification of a Congo Red dye solution by means of ozone treatment for a possible water reuse,” J. Hazard. Mater., 161, pp. 974-981 (2009).
Khare, U. K., P. Bose, and P. S. Vankar, “Impact of ozonation on subsequent treatment of azo dye solutions,” J. Chem. Technol. Biot., 82, pp. 1012-1022 (2007).
Koch, M., A. Yediler, D. Lienert, G. Insel, and A. Kettrup, “Ozonation of hydrolyzed azo dye Reactive Yellow 84 (CI),” Chemosphere, 46, pp. 109-113 (2002).
Koyunluoglu, S., I. Arslan-Alaton, G. Eremektar, and F. Germirli-Babuna, “Pre-ozonation of commercial textile tannins: effects on biodegradability and toxicity,” J. Environ. Sci. Heal. A, 41, pp. 1873-1886 (2006).
Kreetachat, T., M. Damrongsri, V. Punsuwon, P. Vaithanomsat, C. Chiemchaisri, and C. Chomsurin, “Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents,” J. Hazard. Mater., 142, pp. 250-257 (2007).
Kunz, A., H. Mansilla, and N. Durán, “A degradation and toxicity study of three textile reactive dyes by ozone,” Environ. Technol., 23, pp. 911-918 (2002).
Lackey, L. W., R. O. Mines Jr., and P. T. McCreanor, “Ozonation of Acid Yellow 17 dye in a semi-batch bubble column,” J. Hazard. Mater., 138, pp. 357-362 (2006).
Lall, R., R. Mutharasan, Y. T. Shah, and P. Dhurjati, “Decolorization of the dye, Reactive Blue 19, using ozonation, ultrasound, and ultrasound-enhanced ozonation,” Water Environ. Res., 75, pp. 171-179 (2003).
Langlais, B., D. A. Reckhow, D. R. Brink, Ozone in water treatment: application and engineering, Lewis Publishers, Michigan, USA (1991).
Ledakowicz, S., M. Solecka, and R. Zylla, “Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes,” J. Biotechnol., 89, pp. 175-184 (2001).
Lee, Y. H. and S. G. Pavlostathis, “Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions,” Water Res., 38, 1838-1852 (2004).
Lee, Y. H., R. D. Matthews, and S. G. Pavlostathis, “Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions,” Water Environ. Res., 78, pp. 156-169 (2006).
Li, K., A. Yediler, M. Yang, S. Schulte-Hostede, and M. H. Wong, “Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products,” Chemosphere, 72, pp. 473-478 (2008).
Liakou, S., S. Pavlou, and G. Lyberatos, “Ozonation of azo dyes,” Water Sci. Technol., 35, pp. 279-286 (1997).
Libra, J. A. and F. Sosath, “Combination of biological and chemical processes for the treatment of textile wastewater containing reactive dyes,” J. Chem. Technol. Biot, 78, pp. 1149-1156 (2003).
Lima, A. A., A. F. Montalvao, M. Dezotti, and G. L. Sant’Anna Jr., “Ozonation of a complex industrial effluent: oxidation of organic pollutants and removal of toxicity,” Ozone-Sci. Eng., 28, pp. 3-8 (2006).
Lin, C. K., T. Y. Tsai, J. C. Liu, and M. C. Chen, “Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system,” Water Res., 35, pp. 699-704 (2001).
Liu, J. L., H. J. Luo, and C. H. Wei, “Degradation of anthraquinone dyes by ozone,” T. Nonferr. Metal Soc., 17, pp. 880-886 (2007).
Lopez, A., G. Ricco, G. Mascolo, G. Tiravanti, A. C. Di Pinto, and R. Passino, “Biodegradability enhancement of refractory pollutants by ozonation: a laboratory investigation on an azo-dyes intermediate,” Water Sci. Technol., 38, pp. 239-245 (1998).
Lopez, A., H. Benbelkacem, J. S. Pic, and H. Debellefontaine, “Oxidation pathways for ozonation of azo dyes in a semi-batch reactor: a kinetic parameters approach,” Environ. Technol., 25, pp. 311-321 (2004).
Lu, X., B. Yang, J. Chen, and R. Sun, “Treatment of wastewater containing azo dye Reactive Brilliant Red X-3B using sequential ozonation and upflow biological aerated filter process,” J. Hazard. Mater., 161, pp. 241-245 (2009).
Mao, H. and D. W. Smith, “Influence of ozone application methods on efficacy of ozone decolourisation of pulp mill effluents,” Ozone-Sci. Eng., 17, pp. 205-236 (1995).
Marco, A., S. Esplugas, and G. Saum, “How and why combine chemcial and biological processes for wastewater treatment,” Water Sci. Technol., 35, pp. 321-327 (1997).
Martín Santos, M. A., J. L. Fernández Bocanegra, A. Martín, and I. García, “Ozonation of vinasse in acid and alkaline media,” J. Chem. Technol. Biot., 78, pp. 1121-1127 (2003).
Martins, A. de O., V. M. Canalli, C. M. N. Azevedo, and M. Pires, “Degradation of pararosaniline (C.I. Basic Red 9 monohydrochloride) dye by ozonation and sonolysis,” Dyes Pigments, 68, pp. 227-234 (2006).
Mascolo, G., A. Lopez, A. Bozzi, and G. Tiravanti, “By-products formation during the ozonation of the reactive dye Uniblu-A,” Ozone-Sci. Eng., 24, pp. 439-446 (2002).
Matsui, M., K. Kobayashi, K. Shibata, and Y. Takase, “Ozonation of dyes. II. ozone treatment of 4-phenylazo-1-naphthol,” J. Soc. Dyers Colour, 97, pp. 210-213 (1981).
Máximo, C., M. T. P. Amorim, and M. Costa-Ferreira, “Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019,” Enzyme Microb. Technol., 32, pp. 145-151 (2003).
McCallum, J. E. B., S. A. Madison, S. Alkan, R. L. Depinto, and R. U. R. Wahl, “Analytical studies on the oxidative degradation of the reactive textile dye Uniblue A,” Envrion. Sci. Technol., 34, pp. 5157-5164 (2000).
Metcalf and Eddy, Wastewater engineering: treatment and reuse, McGraw-Hill, New York (2003).
Miao, H. and W. Tao, “Ozonation of humic acid in water,” J. Chem. Technol. Biot., 83, pp. 336-344 (2008).
Miller, J. S. and D. Olejnik, “Ozonation of polycyclic aromatic hydrocarbons in water solution,” Ozone-Sci. Eng., 26, pp. 453-464 (2004).
Möbius, C. H. and M. Cordes-Tolle, “Enhanced biodegradability by oxidative and radiative wastewater treatment,” Water Sci. Technol., 35, pp. 245-250 (1997).
Mok, Y. S., J. O. Jo, and J. C. Whitehead, “Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water,” Chem. Eng. J., 142, pp. 56-64 (2008).
Mondal, S., “Methods of dye removal from dye house effluent: an overview,” Enviorn. Eng. Sci., 25, pp. 383-396 (2008).
Moraes, P. B., R. R. L. Pelegrino, and R. Bertazzoli, “Degradation of Acid Blue 40 dye solution and dye house wastewater from textile industry by photo-assisted electrochemical process,” J. Environ. Sci. Heal. A, 42, pp. 2131-2138 (2007).
Moreira, P. R., E. Almeida-Vara, G. Sena-Martins, I. Polónia, F. X. Malcata, and J. C. Duarte, “Decolourisation of Remazol Brilliant Blue R via a novel Bjerkandera sp. strain,” J. Biotechnol., 89, pp. 107-111 (2001).
Mysore, S. C. And G. Amy, “Effects of NOM sources variations and Calcium complexation capacity on ozone induced particle destabilization,” Water Res., 32, pp. 115-124 (1988).
Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei, “Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes,” Appl. Microbiol. Biot., 60, pp. 327-335 (2002).
Neamtu, M., A Yediler, I. Siminiceanu, M. Macoveanu, and A. Kettrup, “Decolorization of Disperse Red 354 azo dye in water by several oxidation processes: a comparative study,” Dyes Pigments, 60, pp. 61-68 (2004).
Novotný, Č., B. Rawal, M. Bhatt, M. Patel, V. Šašek, H. P. Molitoris, “Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes,” J. Biotechnol., 89, pp. 113-122 (2001).
Novotný, Č., N. Dias, A. Kapanen, K. Malachová, M. Vándrovcová, M. Itävaara., and N. Lima, “Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes,” Chemosphere, 63, pp. 1436-1442 (2006).
O’Neill, C., F. R. Hawkes, D. L. Hawkes, N. D. Lourenço, H. M. Pinheiro, and W. Delée, “Colour in textile effluents–sources, measurement, discharge consents and simulation: a review,” J. Chem. Technol. Biot., 74, 1009-1018 (1999).
Panswad, T. and W. Luangdilok, “Decolorization of reactive dyes with different molecular structures under different environmental conditions,” Water Res., 34, pp. 4177-4184 (2000).
Pearce, C. I., J. R. Lloyd, and J. T. Guthrie, “The removal of colour from textile wastewater using whole bacterial cells: a review,” Dyes Pigments, 58, pp. 179-196 (2003).
Peralta-Zamora, P., A. Kunz, S. G. De Moraes, R. Pelegrini, P. de Campos Moleiro, J. Reyes, and N. Durán, “Degradation of reactive dyes I. a comparative study of ozonation, enzymatic and photochemical processes,” Chemosphere, 38, pp. 835-852 (1999).
Perkowski, J., L. Kos, S. Ledakowicz, “Application of ozone in textile wastewater treatment,” Ozone-Sci. Eng., 18, pp. 73-85 (1996).
Perkowski, J. and S. Ledakowicz, “Decomposition of anthraquinone dye in the aqueous solution by ozone, hydrogen peroxide or UV radiation,” Fibres Text. East. Eur., 38, pp. 72-77 (2002).
Perkowski, J., L. Kos, S. Ledakowicz, and R. Żyłła, “Decomoposition of anthraquinone dye Acid Blue 62 by the decolorization of textile wastewater by advanced oxidation process,” Fibres Text. East. Eur., 41, pp. 88-94 (2003).
Perkowski, J., L. Kos, R. Żyłła, and S. Ledakowicz, “A kinetic model of decoloration of water solution of anthraquinone dye initiated by generality hydroxyl radicals,” Fibres Text. East. Eur., 54, pp. 59-64 (2005).
Qian, Y., Y. Wen, and H. Zhang, “Efficacy of pre-treatment methods in the activated sludge removal of refractory compounds in coke-plant wastewater,” Water Res., 28, pp. 701-707 (1994).
Rajkumar, D., B. J. Song, and J. G. Kim, “Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds,” Dyes Pigments, 72, pp. 1-7 (2007).
Raghukumar, C., “Fungi from marine habitats: an application in bioremediation,” Mycol. Res., 104, pp. 1222-1226 (2000).
Revenga, J., F. Rodríguez, and J. Tijero, “Study on the redox behavior of anthraquinone in aqueous medium,” J. Electrochem. Soc., 141, pp. 330-333 (1994).
Rice, R. G., “Applications of ozone for industrial wastewater treatment: a review,” Ozoen-Sci. Eng., 18, pp. 477-515 (1997).
Richardson, S. D., A. D. Thruston, Jr., J. M. McGuire, and E. J. Weber, “Structural characterization of reactive dye using liquid secondary ion mass spectrometry/tandem mass spectrometry,” Org. Mass Spectrom., 28, pp. 619-625 (1993).
Riebel, A. H., R. E. Erickson, C. J. Abshire, and P. S. Bailey, “Ozonation of carbon-nitrogen double bonds. I. nucleophilic attack of ozone,” J. Am. Chem. Soc., 82, pp. 1801-1807 (1960).
Santana, M. H. P., L. M. Da Silva, A. C. Freitas, J. F. C. Boodts, K. C. Fernandes, and L. A. De Faria, “Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122,” J. Hazard. Mater., 164, pp. 10-17 (2009).
Saquib, M. and M. Muneer, “Semiconductor mediated photocatalysed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source,” Dyes Pigments, 53, pp. 237-249 (2002).
Saroj, D. P., A. Kumar, P. Bose, V. Tare, and Y. Dhopavkar, “Mineralization of some natural refractory organic compounds by biodegradation and ozonation,” Water Res., 39, pp. 1921-1933 (2005).
Saunders, F. M., J. P. Gould, and C. R. Southerland, “The effect of solute competition on ozonolysis of industrial dyes,” Water Res., 17, pp. 1407-1419 (1983).
Schliephake, K. and G. T. Lonergan, “Laccase variation during dye decolourisation in a 200 L packed-bed bioreactor,” Biotechnol. Lett., 18, pp. 881-886 (1996).
Schröder, H. Fr., “Non-biodegradable wastewater compounds treated by ozone or ozone/UV: conversion monitoring by substance-specific analysis and biotoxicity testing,” Water Sci. Technol., 33, pp. 331-338 (1996).
Scott, J. P. and D. F. Ollis, “Integration of chemical and biological oxidation processes for water treatment: review and recommendations,” Environ. Prog., 14, pp. 88-103 (1995).
Seferoğlu, Z., N. Ertan, T. Hökelek, and E. Şahin, “The synthesis, spectroscopic properties and crystal structure of novel, bis-hetarylazo disperse dyes,” Dyes Pigments, 77, pp. 614-625 (2008).
Senthilkumaar, S., P. Kalaamani, K. Porkodi, P. R. Varadarajan, and C. V. Subburaam, “Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural wastewater,” Bioresour. Technol., 97, pp. 1618-1625 (2006).
Sevimli, M. F. and H. Z. Sarikaya, “Ozone treatment of textile effluents and dyes: effect of applied ozone dose, pH and dye concentration,” J. Chem. Biot., 77, pp. 842-850 (2002).
Sevimli, M. F., H. Z. Sarikaya, and M. S. Yazgan, “A new approach to determine the practical ozone dose for color removal from textile wastewater,” Ozone-Sci. Eng., 25, pp. 137-143 (2003).
Shang, N. C., Y. H. Yu, H. W. Ma, C. H. Chang, and M. L. Liou, “Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols,” J. Environ. Manage., 78, pp. 216-222 (2006).
Shu, H. Y. and C. R. Huang, “Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process,” Chemosphere, 31, pp. 3813-3825 (1995).
Slokar, Y. M. and A. M. Le Marechal, “Methods of decoloration of textile wastewaters,” Dyes Pigments, 37, pp. 335-356 (1998).
Solomons, T. W. G., Fundamentals of organic chemistry, 3rd edition, John Wiley & Sons, New York, USA (1990).
Srinivasan, S. V., T. Rema, K. Chitra, K. S Balakameswari, R. Suthanthararajan, B. U. Maheswari, E. Ravindranath, and S. Rajamani, “Decolourisation of leather dye by ozonation,” Desalination, 235, pp. 88-92 (2009).
Srivastava, S., P. Bose, and V. Tare, “Enhancement of chemical-oxygen demand and color removal of distillery spent-wash by ozonation,” Water Environ. Res., 78, pp. 409-420 (2006).
Staehelin, J. and J. Hoginé, “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide,” Environ. Sci. Technol., 16, pp. 666-681 (1982).
Staehelin, J., R. E. Bühler, and J. Hoginé, “Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates,” J. Phys. Chem., 88, pp. 5999-6004 (1984).
Staehelin, J. and J. Hoginé, “Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions,” Environ. Sci. and Technol., 19, pp. 1206-1212 (1985).
Stover, E. L., L. W. Wang, and D. R. Medley, “Ozone assisted biological treatment of industrial wastewaters containing biorefractory compounds,” Ozone-Sci. Eng., 4, pp. 177-194 (1982).
Suzuki, J., K. Hukushima, and S. Suzuki, “Effect of ozone treatment upon biodegradability of water-soluble polymers,” Environ. Sci. Technol., 12, pp. 1180-1183 (1978).
Suzuki, T., S. Timofei, L. Kurunczi, U. Dietze, and G. Schüürmann, “Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure,” Chemosphere, 45, pp. 1-9 (2001).
Szpyrkowicz, L., C. Juzzolino, and S. N. Kaul, “A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent,” Water Res., 35, pp. 2129-2136 (2001).
Tabrizi, G. B. and M. Mehrvar, “Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances,” J. Environ. Sci. Heal. A, 39, pp. 3029-3081 (2004).
Takahashi, N., T. Nakai, Y. Satoh, and Y. Katoh, “Variation of biodegradability of nitrogenous organic compounds by ozonation,” Water Res., 28, pp. 1563-1570 (1994).
Takahashi, N. and T. Kumagai, “Removal of dissolved organic carbon and color from dyeing wastewater by pre-ozonation and subsequent biological treatment,” Ozone-Sci. Eng., 28, pp. 199-205 (2006).
Taylor, J. A., “Recent developments in reactive dyes,” Rev. Prog. Coloration, 30, pp. 93-107 (2000).
Tomiyasu, H., H. Fukutomi, and G. Gordon, “Kinetics and mechanism of ozone decomposition in basic aqueous solution,” Inorg. Chem., 24, pp. 2962-2966 (1985).
Turhan, K. and S. Uzman, “The degradation products of aniline in the solutions with ozone and kinetic investigations,” Ann. Chim., 97, pp. 1129-1138 (2007).
USPHS, Toxicological profile for 2,3-benzofuran, U.S. Public Health Service, Agency for Toxic Substances and Disease Registry, USA (1992).
van der Zee, F. P. and S. Villaverde, “Combined anaerobic-aerobic treatment of azo dyes: a short review of bioreactor studies,” Water Res., 39, pp. 1425-1440 (2005).
Vandevivere, P. C., R. Bianchi, and W. Verstraete, “Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies,” J. Chem. Technol. Biot., 72, pp. 289-302 (1998).
Vogel, F., J. Harf, A. Hug, and P. R. von Rohr, “The mean oxidation number of carbon (MOC): a useful concept for describing oxidation process,” Water Res., 34, pp. 2689-2702 (2000).
von Sonntag, C., P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N. Schuchmann, and H. P. Schuchmann, “The fate of peroxyl radicals in aqueous solution,” Water Sci. Technol., 35, pp. 9-15 (1997).
Wang, C., A. Yediler, D. Lienert, Z. Wang, and A. Kettrup, “Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products,” Chemosphere, pp. 1225-1232 (2003).
Wang, Y., M. Yang, J. Zhang, Y. Zhang, and M. Gao, “Improvement of biodegradability of oil field drilling wastewater using ozone,” Ozone-Sci. Eng., 26, pp. 309-315 (2004a).
Wang, F., M. G. El-Din, and D. W. Smith, “Oxidation of aged raw landfill leachate with O3 only and O3/H2O2: treatment efficiency and molecular size distribution analysis,” Ozone-Sci. Eng., 26, pp. 287-298 (2004b).
Weber, E. J. and V. C. Stickney, “Hydrolysis kinetics of Reactive Blue 19-vinyl sulfone,” Water Res., 27, pp. 63-67 (1993).
Westerhoff, P., R. Song, G. Amy, and R. Minear, “Applications of ozone decomposition models,” Ozone-Sci. Eng., 19, pp. 55-73 (1997).
Westerhoff, P., G. Aiken, G. Amy, and J. Debroux, “Relationships between the structrue of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals,” Water Res., 33, pp. 2265-2276 (1999).
Wu, J. and T. Wang, “Ozonation of aqueous azo dye in a semi-batch reactor,” Water Res., 35, pp. 1093-1099 (2001).
Wu, J., H. Doan, and S. Upreti, “Decolorization of aqueous textile reactive dye by ozone,” Chem. Eng. J., 142, pp. 156-160 (2008).
Wu, Z., “Recent developments of reactive dyes and reactive dyeing of silk,” Rev. Prog. Coloration, 28, pp. 32-38 (1998).
Yang, C. L. and J. McGarrahan, “Electrochemical coagulation for textile effluent decolorization,” J. Hazard. Mater., 127, pp. 40-47 (2005).
Yao, J. J., Z. H. Huang, and S. J. Masten, “The ozonation of benz[a]anthracene: pathway and product identification,” Water Res., 32, pp. 3235-3244 (1998).
Yavich, A. A., K. H. Lee, K. C. Chen, L. Pape, and S. J. Masten, “Evaluation of biodegradability of NOM after ozonation,” Water Res., 38, pp. 2839-2846 (2004).
Yeber, M. C., J. Rodríguez, J. Freer, J. Baeza, N. Durán, and H. D. Mansilla, “Advanced oxidation of a pulp mill bleaching wastewater,” Chemosphere, 39, pp. 1679-1688 (1999).
Yu, G., W. Zhu, and Z. Yang, “Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater,” Chemosphere, 37, pp. 487-494 (1998).
Yu, F. Y., C. W. Li, and S. F. Kang, “Color, dye and DOC removal, and acid generation during Fenton oxidation of dyes,” Environ. Technol., 26, pp. 537-544 (2005).
Zhang, F., A. Yediler, X. Liang, and A. Kettrup, “Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C.I. Reactive Red 120,” Dyes Pigments, 60, pp. 1-7 (2004).
Zhang, F., A. Yediler, and X. Liang, “Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. Reactive Red 120 during ozonation,” Chemosphere, 67, pp. 712-717 (2007).
Zhao, W., H. Shi, and D. Wang, “Ozonation of Cationic Red X-GRL in aqueous solution: degradation and mechanism,” Chemosphere, 57, pp. 1189-1199 (2004).
Zollinger, H., Color chemistry: syntheses, properties, and applications of organic dyes and pigments, Wiley-VCH, Weinheim, Germany (2003).
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2009-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明