博碩士論文 963206017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.138.105.124
姓名 龔信誠(Xin-cheng Gong)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 戴奧辛分解菌篩選與特性分析
(Isolation and characterization of dioxin biotransformation bacteria)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究希望能由台灣的戴奧辛污染土壤,尋找出戴奧辛分解菌,並透過菌種的生化特性分析與污染物強化培養基的測試,達到分解菌的篩選、分離與馴化之目的。
本研究自污染場址下游採集的三個土壤樣品,戴奧辛毒性當量濃度最高為2450 ng-TEQ/kg。由菌源取出的菌株經過培養與分離後,分離鑑定出四株能存活於含有戴奧辛之培養基中,其菌株分別為Achromobacter xylosoxidans、Ochrobactrum anthropi、Ralstonia mannitolilytica和Agromyces sp.。本次研究所篩選出來的菌株,皆屬於革蘭氏陰性菌,外型為桿菌,其中以Ochrobactrum anthropi及Agromyces sp.菌體的長度約2μm,寬約1μm為最大。親緣演化分析結果顯示,Agromyces sp.與五氯酚分解菌Mycobacterium chlorophenolicum PCP-1親緣較接近,確認親緣可信度的Bootstrap value有95,代表此結果是可信的。
在分解菌生長與戴奧辛降解分析方面,本次研究所篩選的四株戴奧辛分解菌,需外添加1000 mg/L的葡萄糖,分解菌生長才不受培養基中戴奧辛(10μg/kg 2,3,7,8-TCDD)抑制。生長動力分析結果顯示,Achromobacter xylosoxidans及Ochrobactrum anthropi的最大比生長率,約0.115h-1。基質親和力的分析結果顯示,Ralstonia mannitolilytica 有最小基質親和力(Ks),其值為43.2mg/L,代表此菌株對於基質的依賴性較小。抑制係數則是以Ochrobactrum anthropi的0.948mg/L為最大。
戴奧辛降解測試結果顯示,四菌株皆有戴奧辛降解的效果,且都是以好氧為主要途徑。此外,實驗結果顯示Achromobacter xylosoxidans、Ochrobactrum anthropi、Agromyces sp.三菌株,皆在適應期便有明顯降解2,3,7,8-TCDD的效果,但Ralstonia mannitolilytica需到生長期,2,3,7,8-TCDD濃度才有明顯變化。在這四株分解菌中,以Agromyces sp.的降解效果最佳,能使2,3,7,8-TCDD濃度下降97%。另外,透過蛋白質體分析發現,Achrom- obacter xylosoxidans受2,3,7,8-TCDD的影響,分子量40及50kDa的蛋白質濃度有增加的情形,Ochrobactrum anthropi亦有相同情況。Ralstonia mannitolilytica除120kDa的蛋白質外,其餘部份皆受戴奧辛的影響而減少了,其原因需進一步釐清,Agromyces sp. 的結果稍有不同,受2,3,7,8-TCDD影響後,改變的蛋白質為20及120kDa。
摘要(英) The objective of this study was to isolate the indigenous dioxin-degrading bacteria of Taiwan. Also, the characteristics of these bacteria were investigated after isolation followed by culture enrichment and strains acclimation.
Three soil samples were gathered from the downstream of the announced dioxin and contamination site. The analytical results of PCDDs/PCDFs and their isomer concentration in all samples confirmed the dioxin contamination of the sampling site with the highest total toxic equivalence of 2450 ng-TEQ/kg of the contaminants. Four bacteria strains which can survive in dioxin media were isolated after sub-culture inoculation. The four strains were identified as Achromobacter xylosoxidans, Ochrobactrum anthropi, Ralstonia mannitolilytica and Agromyces sp.. It was found that all of the strains are gram’s negative in the morphology. In addition, Ochrobactrum anthropi and Agromyces sp. demonstrated the largest configuration with length 2 μm and width 1 μm. Particularly, Agromyces sp. had closest relationship to the PCP-degrading bacterium Mycobacterium chlorophenolicum PCP-1 according to phylogenetic analysis (bootstrap value = 95).
The microbial growth kinetics showed that Achromobacter xylosoxidans and Ochrobactrum anthropi had the maximum specific growth rate of 0.115 h-1. Ralstonia mannitolilytica had the smallest half-saturation constants of 43.2 mg/L, meaning least dependence of substrate. Ochrobactrum anthropi has the greatest substrate inhibition coefficient of 0.948 mg/L. However, the microbial growth tests revealed that adding extra carbon source of glucose (1000 mg/L) to the culture medium containing high dioxin concentration (10 μg/kg 2,3,7,8-TCDD) would decrease the growth inhibition.
Achromobacter xylosoxidans, Ochrobactrum anthropi, Agromyces sp. could degrade 2,3,7,8-TCDD at lag phase, whereas Ralstonia mannitolilytica decomposed it primarily at log phase. It was also observed that Agromyces sp. had the maximum 2,3,7,8-TCDD degradation efficiency (97%). The results of proteome analysis suggested that two primary proteome molecular weight of 40 and 50kDa for Achromobacter xylosoxidans and Ochrobactrum anthropi had changed during degradation of 2,3,7,8-TCDD. By contrast, 120 kDa proteome of Ralstonia mannitolilytica as well as 20 and 120 kDa proteome of Agromyces sp. would increase when 2,3,7,8-TCDD was degraded.
關鍵字(中) ★ 戴奧辛
★ 分解菌篩選
★ 生物降解
★ 生長動力
關鍵字(英) ★ Dioxin
★ Isolation
★ Biodegradation
★ Growth kinetics
論文目次 第一章前言................................................................................................................... 1
1-1 研究緣起............................................................................................................ 1
1-2 研究目的與架構............................................................................................... 2
第二章文獻回顧............................................................................................................ 5
2-1 戴奧辛污染物介紹........................................................................................... 5
2-1-1 戴奧辛特性及來源.................................................................................... 5
2-1-2 戴奧辛毒性與規範.................................................................................... 7
2-2 台灣戴奧辛污染情況..................................................................................... 10
2-3 土壤中五氯酚與戴奧辛整治方法................................................................. 11
2-3-1 土壤污染整治技術介紹.......................................................................... 12
2-3-2 戴奧辛污染整治方法.............................................................................. 13
2-4 生物處理五氯酚與戴奧辛............................................................................. 15
2-4-1 微生物好氧降解戴奧辛.......................................................................... 15
2-4-2 微生物厭氧脫氯戴奧辛.......................................................................... 19
2-5 戴奧辛的生化代謝途徑................................................................................. 21
2-5-1 戴奧辛好氧降解途徑.............................................................................. 21
2-5-2 戴奧辛厭氧脫氯途徑.............................................................................. 24
2-6 本章總結......................................................................................................... 27
第三章材料與方法...................................................................................................... 28
3-1 菌源土壤污染物分析..................................................................................... 28
3-1-1 菌源土壤中五氯酚分析方法.................................................................. 28
3-1-2 菌源土壤中戴奧辛分析方法.................................................................. 29
3-2 戴奧辛分解菌篩選與培養.............................................................................. 31
3-2-1 戴奧辛分解菌株馴化培養....................................................................... 31
3-2-2 戴奧辛分解菌株篩選與分離................................................................... 33
3-3 分解菌株鑑定................................................................................................. 33
3-3-1 BioLog 菌株鑑定方法............................................................................... 34
3-3-2 16S rDNA 菌株鑑定方法........................................................................... 37
3-4 菌株生長與降解測試..................................................................................... 38
3-4-1 菌株生長測試.......................................................................................... 38
3-4-2 戴奧辛降解分析...................................................................................... 39
3-5 蛋白質電泳實驗............................................................................................. 41
3-5-1 蛋白樣品製備.......................................................................................... 41
3-5-2 聚丙烯醯胺膠體電泳............................................................................... 42
第四章結果與討論...................................................................................................... 45
4-1 五氯酚與戴奧辛場址污染現況..................................................................... 45
4-1-1 場址污染分析-五氯酚.......................................................................... 45
4-1-2 場址污染分析-戴奧辛及呋喃.............................................................. 47
4-1-3 場址污染現況.......................................................................................... 51
4-2 戴奧辛分解菌篩選與鑑定............................................................................. 52
4-2-1 戴奧辛分解菌篩選.................................................................................. 52
4-2-2 菌種鑑定-BioLog ................................................................................... 53
4-2-3 菌種鑑定-16S rDNA............................................................................... 59
4-2-4 菌種篩選與鑑定結果.............................................................................. 64
4-2-5 分解菌株觀察與親緣演化分析.............................................................. 66
4-3 戴奧辛分解菌生長測試................................................................................. 72
4-3-1 碳源對戴奧辛分解菌生長之影響.......................................................... 72
4-3-2 分解菌生長動力分析.............................................................................. 77
4-4 戴奧辛降解測試............................................................................................. 80
4-4-1 2,3,7,8-TCDD 濃度變化分析.................................................................... 80
4-4-2 2,7,8-TCDD 濃度變化分析........................................................................ 84
4-4-3 2,7-DCDD 濃度變化分析.......................................................................... 87
4-4-4 2-CDD 濃度變化分析................................................................................ 90
4-4-5 2,3,7,8-TCDD 降解途徑分析..................................................................... 94
4-5 分解菌蛋白質體分析..................................................................................... 99
第五章結論與建議.................................................................................................... 103
5-1 結論..………………………………………………………………………………………………………….103
5-2 建議................................................................................................................105
參考文獻..................................................................................................................... 107
附錄…………..................................................................................................................113
參考文獻 台南市環保局。2009。中石化資訊網。網址http://cpdc.recyclesources.com/about/map.htm
行政院勞工委員會。2007。戴奧辛物質安全資料表。http://ghs.cla.gov.tw/tw/MSDS.asp?sn=2842
行政院衛生署。2006。食品中戴奧辛處理規範。
行政院環境保護署。2002。煉鋼業電弧爐戴奧辛管制及排放標準。
行政院環境保護署。2007a。放流水標準。
行政院環境保護署。2007b。有害事業廢棄物認定標準。
行政院環境保護署。2009。土壤及地下水污染整治網。網址http://sgw.epa.gov.tw/public/0401.asp
行政院環境保護署環境檢驗所。2005。戴奧辛及呋喃檢測方法-同位素標幟稀釋氣象層析/高解析質譜法。行政院環境保護署環境檢驗所
行政院環境保護署環署。1998。地面水體分類及水質標準。
行政院環境保護署環署。2005。多氯聯苯等一六一列管編號毒性化學物質使用用途限制等運作管理事項。
行政院環境保護署環署。2006a。土壤及地下水污染控制場址初步評估辦法。
行政院環境保護署環署。2006b。固定污染源戴奧辛排放標準。
行政院環境保護署環署。2006c。95年度土壤及地下水污染整治年報。
宋秉育。2004。辛基苯酚之分解:分解菌和生物復育之菌相研究。國立中央大學生命科學研究所碩士論文。
宋德高、史麗芬。2005。台南市中石化安順廠整治場址土壤及地下水污染範圍調查及整治工作建議計畫。工業技術研究院、瑞昶科技股份有限公司。
阮國棟。 1984。廢水中各種酚類去除之理論與實業。工業污染防治,第三卷,第三期,p.88-108。
林居慶。2000。乳化菌之篩選及其特性之研究。國立臺灣大學環境工程學研究所碩士論文。
邱瑞斌。2002。受五氯酚污染土壤復育技術之研究。屏東科技大學環境工程與科學系碩士論文。
陳呈芳。2006。戴奧辛污染土壤整治技術。水利土木科技資訊,第33 期, p.1-8。
陳怡伶、羅鈞、莊桓齊、李秀霞、周劍平、易志峰、潘樹德、陳明旼、江光華。2008。固定污染源毒性空氣污染物( 戴奧辛及重金屬)排放清冊調查及管制計畫。中興工程顧問股份有限公司。
陳福勝、陳卓然、林士誠。2001。土壤及地下水污染處理總論(譯)。中華技術雜誌,第49期。
莊榮輝、吳建興、陳翰民、張世宗、林士民、劉育志。2005。酵素化學實驗。國立台灣大學生物化學研究室。
陳錫金。2005。界面活性劑Octylphenol Polyethoxylates生物降解與復育之研究。國立中央大學環境工程研究所博士論文。
楊茱芳。2003。五氯酚分解菌之分離與及其生理特性研究。國立中興大學環境工程學系碩士論文。
潘錦橐。2005。三座大型都市焚化廠周界及五氯酚污染廠址土壤中戴奧辛/呋喃之特徵。國立成功大學化學工程學系碩士論文。
蔡岡廷、王建楠。2007。戴奧辛污染與健康危害。中華職業醫學雜誌 14(4):261-268。
Adriaens, P., Grbic-Galic, D., 1994. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29, 2253–2259.
Annachhatre, A. P., & Gheewala, S. H., 1996, Biodegradation of chlorinated phenolic compounds. Biotechnology Advances 14, 35-56.
Barkovskii, A.L., Adriaens, P., 1996. Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and diversity of dioxin-dechlorinating populations. Appl. Environ. Microbiol. 62, 4556–4562.
Barkovskii, A.L., Adriaens, P., 1998, Impact of humic constituents on microbial dechlorination of polychlorinated dioxins. Environ. Toxicol. Chem. 17, 1013–1020.
Berry, D. F., Francis, A. J., and Bollag, J. M., 1987, Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiological Reviews 51: 43~59.
Bochner, B. R.,1989, Sleuthing out bacterial identities. Nature, 339, 157-158.
Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W.G., Andreesen, J.R., Gorisch, H., Lechner, U., 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421, 357–360.
Chandra, R., Ghosh, A., Jain, R. K., & Singh, S., 2006, Isolation and characterization of two potential pentachlorophenol degrading aerobic bacteria from pulp paper effluent sludge. Journal of General and Applied Microbiology 52, 125-130.
Chang, Y., 2008, Recent developments in microbial biotransformation and biodegradation of dioxins. Journal of Molecular Microbiology and Biotechnology 15, 152-171.
Fennell, D.E., Nijenhuis, I., Wilson, S.F., Zinder, S.H., Haggblom, M.M., 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ. Sci. Technol. 38, 2075–2081.
Field, J. A., & Sierra-Alvarez, R., 2008. Microbial degradation of chlorinated dioxins. Chemosphere 71, 1005-1018.
Fukuda, K., Nagata, S., Taniguchi, H., 2002. Isolation and characterization of dibenzofuran- degrading bacteria. FEMS Microbiol. Lett. 208, 179–185.
Habe, H., Chung, J.S., Lee, J.H., Kasuga, K., Yoshida, T., Nojiri, H., Omori, T., 2001a. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl. Environ. Microbiol. 67, 3610–3617.
Hong, H.B., Nam, I.H., Murugesan, K., Kim, Y.M., Chang, Y.S., 2004. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzop-dioxins by Pseudomonas veronii PH-03. Biodegradation 15, 303–313
IARC,1997, Polychlorinated Dibenzo-para-dioxins and Polychlorinated Dibenzofurans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 69
Ishii, K., Furuichi, T., Tanikawa, N., & Kuboshima, M., 2009. Estimation of the biodegradation rate of 2,3,7,8-tetrachlorodibenzo-p-dioxin by using dioxin-degrading fungus, pseudoallesc- heria boydii. Journal of Hazardous Materials 162, 328-332.
Isosaari P.,2004, Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Contamination of Sediments and Photochemical Decontamination of Soils . Doctoral dissertation.Publications of the National Public Health Institute.
Juhasz, A. L., & Naidu, R., 2000, Enrichment and isolation of non-specific aromatic degraders from unique uncontaminated (plant and faecal material) sources and contaminated soils. Journal of Applied Microbiology 89, 642-650.
Kearney, P.C., Woolson, E.A., Ellington, C.P., 1972. Persistence and metabolism of chlorodioxins in soils. Environ. Sci. Technol. 6, 1017-1019.
Kjeller, L.O., Rappe, C., 1995. Time trends in levels, patterns, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic proper. Environ. Sci. Technol. 29, 346–355.
Masunaga, S., Takasuga, T., & Nakanishi, J.,2001, Dioxin and dioxin-like PCB impurities in some japanese agrochemical formulations. Chemosphere 44, 873-885.
Matsumura, F., Quensen III, J.G.T., 1983. Microbial degradation of TCDD in a model ecosystem. Environ. Sci. Res. 26, 191-219.
McKay, G., 2002, Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chemical Engineering Journal 86, 343-368.
Miyauchi, K., Sukda, P., Nishida, T., Ito, E., Matsumoto, Y., Masai, E., et al. , 2008, Isolation of dibenzofuran-degrading bacterium, Nocardioides sp. DF412, and characterization of its dibenzofuran degradation genes. Journal of Bioscience and Bioengineering 105, 628-635.
Nam, I.H., Kim, Y.M., Schmidt, S., Chang, Y.S., 2006. Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1. Appl. Environ. Microbiol. 72, 112–116.
NATO/CCMS., 1988, Scientific basis for the development of the International Toxicity Equivalency Factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Report No. 178.
Simkins, S., & Alexander, M., 1984, Models for mineralization kinetics with the variables of substrate concentration and population-density. Applied and Environmental Microbiology 47, 1299-1306.
Singh, S., Chandra, R., Patel, D. K., & Rai, V., 2007, Isolation and characterization of novel serratia marcescens (AY927692) for pentachlorophenol degradation from pulp and paper mill waste. World Journal of Microbiology & Biotechnology 23, 1747-1754.
Son, W. K., Lee, D. Y., Lee, S. H., Joo, W. A., & Kim, C. W., 2003, Analysis of proteins expressed in rat plasma exposed to dioxin using 2-dimensional gel electrophoresis. Proteomics 3, 2393-2401.
Topp, E., Crawford, R. L., and Hanson, R. S., 1988. Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp.. Applied and Environmental Microbiology 54, 2452~2459.
U.S. Congress, Office of Technology Assessment., 1991, Dioxin Treatment Technologies Background Paper .
USEPA, 1994. Health assessment document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds . Vol.III, P5-5.
Vargas, C., Fennell, D.E., Haggblom, M.M., 2001, Anaerobic reductive dechlorination of chlorinated dioxins in estuarine sediments. Appl. Microbiol. Biotechnol. 57, 786–790.
Vogg, H., & Stieglitz, L., 1986, Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere 15, 1373-1378
Weber, R., Schmitz, H. J., Schrenk, D., & Hagenmaier, H., 1997, Metabolic degradation, inducing potency, and metabolites of fluorinated and chlorinated-fluorinated dibenzodioxins and dibenzofurans. Chemosphere 34, 29-40.
Yang, C., Lee, C., & Wang, C., 2006, Isolation and physiological characterization of the pentachlorophenol degrading bacterium sphingomonas chlorophenolica. Chemosphere 62, 709-714.
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2009-12-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明