博碩士論文 953306023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:18.221.13.173
姓名 黃秋華(Chiu-hua Huang)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 台灣北部地區大氣氣膠有機酸特性
(The characteristic of aerosol organic acid in North Taiwan)
相關論文
★ 北部氣膠超級測站近七年氣膠特性變化探討★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性
★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性
★ 鹿林山大氣背景站不同氣團氣膠光學特性★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大氣氣膠在全球氣候變遷影響上扮演了重要的角色。針對大氣氣膠特性的探討,雖然很多研究已經轉移到氣膠有機物,但目前對於氣膠有機物中有機酸的瞭解仍然相當有限,因為氣膠有機酸來源廣泛。本文建立低分子量氣膠一元酸和二元酸的分析技術,並分別在台北北部地區中的偏遠站(石門鄉)及都會區(新莊市)進行冷高壓期間(石門鄉)、一般期間(新莊市)、黃沙期間(石門鄉、新莊市)的氣膠樣本採集,採集後帶回實驗室以離子層析儀進行氣膠有機酸,以探討不同地區、時間,不同污染來源對氣膠有機酸濃度變化的影響。
研究結果發現,三個觀測期間都顯示,都會區及偏遠地區二元酸以Oxalic acid (C2)濃度最高,其次依照濃度高低順序分別為Succinic acid (C4)、Malonic acid (C3)、及Glutaric acid (C5)。在一般期間,都會區氣膠有機酸來源以光化學反應及上下班尖峰時段機動車輛排放為主。當光化學反應明顯時,一元酸Acetic/Formic acid (A/F)比值大約為0.7,二元酸Malonic/Succinic acid (C3/C4)比值有大於1的現象;但在非光化時段,A/F比值為0.86,C3/C4比值則為0.7,說明光化時段C3較C4有更多的產出。
在冷高壓期間,偏遠地區有機酸的產生以長程傳輸過程污染物反應為主,但是一元酸中Formic acid主要受到傳輸光化學反應的影響,Acetic acid的生成則是受到傳輸一次污染排放及類似化石燃料燃燒後發生二次反應的混合影響,A/F比值在1.95左右,在觀測中還發現,一元酸濃度的差異與溫度有相關。類似地,二元酸主要來源是來自於傳輸過程如同化石燃料燃燒後發生的二次反應程序,C3/C4比值大約在0.95附近,兩物種間很高的線性相關指出兩者可能有相同的來源。
黃沙期間有機酸來源以長程傳輸的一次污染排放及二次光化學反應為主,都會區與偏遠地區一元酸都以Acetic acid為優勢物種,主要來源為長程傳輸的二次光化學反應,A/F比值分別為1.2及1.9;二元酸在都會區和偏遠地區來源都是長程傳輸一次污染排放及二次光化學反應的混合,C3/C4比值分別為0.96及1。
摘要(英) Atmospheric aerosol plays a significant role in global climate change. Up to now, many studies on atmospheric aerosol characteristics already shifted to focus on aerosol organics; however, the understanding of aerosol organic acids is still limited because aerosol organic acids are diversified. In this study, the analytical method for measuring low molecular weight monocarboxylic acids (MAs) and dicarboxylic acids (DAs) of atmospheric aerosols is established. Atmospheric aerosols were collected at a remote site (Cape Fuquay at Shimen village in Taipei County) and an urban site (the North Aerosol Supersite of Taiwan Environmental Administration at Hsinchuan City) during cold high-pressure period (Shimen), normal period (Hsinchuan), and Yellow Dust period (Shimen and Hsinchuan). The collected aerosols were taken back to the laboratory for organic acids analyses using ion chromatograph. The goal is to investigate the characteristics of aerosol organic acids contributed from different sources at different areas and times.
The results show that Oxalic acid (C2) was the most abundant species in DAs, followed by Succinic acid (C4), Malonic acid (C3), and Glutaric acid (C5) in both urban and remote areas during all three periods. Aerosol organic acids are mainly contributed from photochemical reactions and mobile vehicle emissions. When photochemical reactions were dominated, the ratio of Acetic/Formic acid (A/F) in MAs was around 0.7, while that of Malonic/Succinic acid (C3/C4) in DAs was above 1. In contrast, A/F was at 0.86 and C3/C4 was at 0.7 during non-photochemical reactions period. It implies that C3 is produced more than C4 when in photochemical reactions period.
The source contributions of organic acids were dominated by long-range transport of pollution in the remote area during cold high-pressure period. Formic acid was mainly affected by photochemical reactions during transport, while Acetic acid was influenced by a combination of transported primary emissions and secondary reactions similar to the processing of fossil fuel burning. The A/F values are around 1.95 during this period. In addition, concentration variations of MAs are found affected by ambient temperature. Analogously, the DAs were mainly produced by a process related to secondary reactions of fossil fuel burning. The ratio of C3/C4 was around 0.95. High linear correlation between C3 and C4 indicates their source contributions are similar.
During Yellow Dust period, aerosol organic acids were found related to sources from primary emissions and secondary photochemical reactions of long-range transport. Acetic acid is the preferable MAs in both urban and remote areas. The ratios of A/F were 1.2 and 1.9 in urban and remote areas, respectively. The source inferences in both urban and remote areas of DAs are a combination of primary emissions and secondary photochemical reaction during transport. The C3/C4 values were 0.96 and 1.0 in urban and remote areas, respectively.
關鍵字(中) ★ PM2.5 氣膠有機酸黃沙期間
★ 長程輸送
★ 低分子量一元酸
★ 低分子量二元酸
關鍵字(英) ★ PM2.5 organic acids
★ Low-molecular-weight dicarboxylic acids
★ Yellow Dust period
★ Low-molecular-weight monocarboxylic acids
★ Long-range transport
論文目次 圖目錄 VIII
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 大氣有機氣膠的種類與含量 3
2.2 大氣中氣膠有機酸的來源 8
2.2.1 氣膠一元酸的來源 8
2.2.2 氣膠二元酸的來源 10
2.3 大氣中氣膠有機酸比值特性 13
第三章 研究方法 16
3.1 氣膠有機酸特性研究架構 16
3.2 採樣地點及採樣儀器 18
3.2.1 採樣地點介紹 18
3.2.2 採樣儀器 20
3.2.3 分析儀器與藥品 23
3.3 採樣濾紙的處理保存與分析 25
3.3.1 質量濃度分析方法 25
3.3.2 氣膠有機酸分析方法 26
3.4 氣膠有機酸污染來源判斷 32
第四章 結果與討論 33
4.1 氣膠有機酸成分濃度變化及來源 33
4.1.1 一般期間都會區PM2.5氣膠ㄧ元酸來源 33
4.1.2 一般期間都會區PM2.5氣膠低分子量二元酸來源 39
4.1.3 都會區氣膠有機酸比值探討 50
4.1.4 以統計方式進行影響氣膠有機酸來源探討 52
4.1.5 都會氣膠有機酸的主成分分析 54
4.1.6 冷高壓期間偏遠站氣膠ㄧ元酸來源 56
4.1.7 冷高壓期間偏遠站氣膠低分子量二元酸來源 65
4.1.8 冷高壓期間偏遠站氣膠有機酸比值探討 71
4.2 黃沙期間氣膠有機酸濃度變化及來源 74
4.2.1 黃沙期間都會區氣膠一元酸來源 78
4.2.2 黃沙期間都會區PM2.5氣膠低分子量二元酸來源 82
4.2.3 黃沙期間偏遠站PM2.5氣膠一元酸來源 88
4.2.4 石門地區氣膠低分子量二元酸來源 93
4.2.5 黃沙影響期間比值綜合討論 101
4.2.6 PM2.5氣膠氣膠有機酸來源彙整 104
4.2.7 PM2.5氣膠有機酸比值綜合評估 107
第五章 結論與建議 109
5.1 結論 109
5.2 建議 112
第六章 參考文獻 113
口試委員意見答覆 122
參考文獻 Aymoz, G., Jaffrezo, J.L., Jacob, V., Colomb, A., George, C.H., 2004. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps. Atmospheric Chemistry and Physics 4, 2499–2512.
Aggarwal, S.G., Mochida M., Kitamori Y., Kawamura, K., 2007. Chemical closure study on hygroscopic properties of urban aerosol particles in Sapporo, Japan. Environmental Science and Technology 41, 6920-6925.
Aggarwal, S.G., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. Journal of Geophysical Research 113, D14301. doi:10.1029/ 2007JD009365.
Baboukas, E.D., Kanakidou, M., Mihalopoulos, N., 2000. Carboxylic acids in gas and particulate phase above the Atlantic Ocean. Journal of Geophysical Research 105, 14,459–14,471.
Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34, 1623–1632.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources and sinks: a review. Atmospheric Environment 30, 4233-4249.
Cheng, Z.L., Lam, K.S., Chan, L.Y., Wang, T., Cheng, K.K., 2000. Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996. Atmospheric Environment 34, 2771–2783.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmospheric Environment 41, 4002–4017.
Decesari, S., Facchini, M.C., Fuzzi, S., 2000. Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach. Journal of Geophysical Research 105, 1481-1489.
Desboeufs, K.V., Losno, R., Colin, J.L., 2001. Factors influencing aerosol solubility during cloud processes. Atmospheric Environment 35, 3529–3537.
Dutton, M.V., Evans, C.S., 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology 42, 881–895.
Falkovich, A.H., Graber, E.R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics Discussions 5, 781-797.
Fisseha R., Dommen J., Gaeggeler K., Weingartner E., Samburova V., Kalberer M., Baltensperger U., 2006. Online gas and aerosol measurement of water soluble carboxylic acids in Zurich. Journal of Geophysical Research., 111, D12316, doi:10.1029/2005JD006782.
Grosjean, D., 1989. Organic acids in southern California air: ambient concentrations, mobile source emissions, in-situ formation and removal processes. Environmental Science and Technology 23, 1504–1506.
Grosjean, D., 1992. Formic and acetic acids: emissions, atmospheric formation and dry deposition at two southern California locations. Atmospheric Environment 26A, 3279–3286.
Hartmann,W.R., Santana, M., Hermoso,M., Andreae, M.O., Sanhueza, E., 1991.Diurnal cycles of formic and acetic acids in the northern part of Guyana shield, Venezuela. Journal of Atmospheric Chemistry 13, 63–72.
Hayasaka, T., Nakajima, S., Ohta, S., Tanaka, M., 1992. Optical and chemical properties of urban aerosols in Sendai and Sapporo, Japan. Atmospheric Environment 26A, 2055–2062.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030–3040.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2007. Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmospheric Environment 41, 6648–6661.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42, 6836–6850.
Huang, X.F., Hu, M., He, L.Y., Tang, X.Y., 2005. Chemical Characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmospheric Environment 39, 2819–2827.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105–110.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227–2235.
Kawamura, K., Sempere, R., Imai, Y., 1996a. Water soluble dicarboxylic aicds and related compounds in Antarctic aerosols. Journal of Geophysical Research 101, 18721–18728.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501–3509.
Kawamura, K., Yasui, O., 2005. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment 39, 1945–1960.
Kawamura, K., Narukaw, M., Li, S.M., Barrie, L.A., 2007. Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic. Journal of Geophysical Research 112, 10307, doi:10.1029/2006JD008244.
Kesselmeier J., and Staudt M., 1999. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. Journal of Atmospheric Chemistry 33: 23–88.
Kerminen, V.M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Merilaien, J., 2000. Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. Journal Aerosol Science 31, 349–362.
Khwaja, H.A. 1995. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmospheric Environment 29,127–129.
Khare, P., Satsangi, G. S., Kumar, N., Kumari, K. M., Srivastava, S. S., 1997. Surface measurements of for maldehyde and formic and acetic acids at a subtropical semiarid site in India, Journal of Geophysical Research 102, 18,997–19,005.
Kubatova, A. Vermeylen, R., Claeys, M., Cafmeyer, J., Maenhaut, W., Roberts, G., Artaxo, P., 2000. Carbonaceous aerosol characterization in the Amazon basin, Brazil: Novel dicarboxylic acids and related compounds, Atmospheric Environment 34, 5037–5051.
Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847–1852.
Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C., 2001. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Environment 35, 1853–1862.
Limbeck, A., Kraxner, Y., Puxbaum H., 2005. Gas to particle distribution of low molecular weight dicarboxylic acids at two different sites in central Europe (Austria). Journal of Aerosol Science 36, 991–1005.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
Narukawa, M., Kawamura, K., Li, S.M., Bottenheim, J.W., 2002. Dicarboxylic acids in the Arctic aerosols and snow packs collected during ALERT 2000. Atmospheric Environment 36, 2491–2499.
Pio, C.A., Silva, P.A., Cerqueira, M.A., Nunes, T.V., 2005. Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees. Atmospheric Environment 39, 1817–1827.
Plewka, A., Gnauk, T., Brüggemann, E., Herrmann, H., 2006. Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmospheric Environment 40, S103–S115.
Ray, J., & McDow, S. R., 2005. Dicarboxylic acid concentration trends and sampling artifacts. Atmospheric Environment 39, 7906–7919.
Röhrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids and glyoxylic acid: seasonal and air mass characteristics. Environmental Science and Technology 35, 95–101.
Röhrl, A., Lammel, G., 2002. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples. Chemosphere 46, 1195–1199.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993a. Sources of Fine Organic Aerosol. 4. Particulate Abrasion Products from Leaf Surfaces of Urban Plants. Environmental Science and Technology 27, 2700–2711.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., 1993b. Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation. Atomspheric Environment 27, 1309–1330.
Sakugawa, H., Kaplan, I. R., 1995. Stable carbon-isotope measurements of atmospheric organic acids in Los Angeles, California, Geophysical Research Letter 22, 1509–1512.
Saxena, P., Hildemann, L.M., Mcmurry, P.H., Seinfeld, J.H., 1995. Organic alter hygroscopic behavior of atmospheric particles c100, 18755–18770.
Scott, B.C., 1982. Predictions of in-cloud conversion rates of SO2 to SO4 based upon a simple chemical and kinematic storm model. Atmospheric Environment 16, 1735-1752.
Servant, J., Kouadio, G., Gros, B., Delmas, R., 1991. Carboxylic monoacids in the air of Mayombe forest (Congo): role of the forest as source or sink. Journal of Atmospheric Chemistry 12, 367–380.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. John Wiley, New York.
Sempéré, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmospheric Environment 28, 449–459.
Sempéré, R., Kawamura, K., 2003. Trans-hemispheric contribution of C2–C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochem. Cycles 17(2), 1069, doi:10.1029/2002GB001980.
Shankar, G.A., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport. Journal of Geophysical Research 113, D14301, doi:10.1029/2007JD009365.
Souza, S.R., Vasconcellos, P.C. and Carvalho, L.R.F., 1999. Low molecular weight carboxylic acids in an urban atmosphere: winter measurements in São Paulo city, Brazil. Atmospheric Environment 33, 2563–2574.
Talbot R. W., Beecher K. M., Harriss R. C., Cofer III W. R.,1988. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site. Journal of Geophysical Research 93, D2, PAGES 1638–1652.
Talbot,R.W., Andreae,M.O., Berresheim,H., Jacob,D.J.,Beecher,K.M., 1990. Sources and sinks of formic, acetic and pyruvic acids over central Amazonia: 2. Wet deposition. Journal of Geophysical Research 95, 6799–16811.
Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941–1950.
Wang, H., Shooter, D., 2004. Low molecular weight dicarboxylic acids in PM10 in a city with intensive solid fuel burning. Atmospheric Environment 56 , 725–733.
Wang Y., Zhuang G.H., Chen, S., An, Z.S., Zheng, A.H., 2007. Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Research 84, 169–181.
Warneck, P., 2003. In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmospheric Environment 34, 1641-1653.
Yang, H., Yu, J., Ho, S.S.H., Xu, J., Wu, W., Wan, C.H., Wang, X., Wang, X.,Wang, L., 2005. The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmospheric Environment 39, 3735–3749.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223–4234.
Yao, X.H., Fang M., Chan, C.K., 2002. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099-2107.
Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
秦若鈺,2004。大氣常有機物及有機/無機混合氣膠含水特行之研究。國立中央大學環境工程研究所碩士論文。
沈士翔,2005。綜觀天氣及不同氣流軌跡影響下的北台灣氣膠特性。國立中央大學環境工程研究所碩士論文。
陳美君,2006。大氣氣膠含水量受氣膠化學成分的影響及水可溶有機碳分析方法的建立。國立中央大學環境工程研究所碩士論文。
方彥仁,2006。長程傳輸對台灣北端氣膠酸鹼度與污染物演化生成程序的影響。國立中央大學環境工程研究所碩士論文。
翁子翔,2006。背景與偏遠站大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究。嘉南藥理科技大學環境工程與科學系碩士論文。
指導教授 李崇德(Chung-te Lee) 審核日期 2010-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明