博碩士論文 92323076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.142.197.212
姓名 黃朝祺(Chi-Chao Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 貧油甲烷預混紊流燃燒最小引燃能量定量量測
(Quantitative Measurements of Minimum Ignition Energy for Lean Premixed Methane Turbulent Combustion)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究定量量測貧油預混甲烷/空氣燃氣之最小引燃能量(minimum ignition energy, MIE)。MIE是一極重要的物理量,攸關著燃料之安全標準、引燃條件以及其後續之燃燒穩定性與效率。本研究特別針對預混燃氣於不同流場條件時,其所需引燃之MIE做深入地量測探討,即MIE與紊流強度(u’’/S_L)和相關紊流特性之關係,S_L為層流燃燒速度。實驗方法採用不同貧油當量比之預混甲烷燃氣(equivalence ratio, phi= 0.6, 0.7, 0.8),利用我們實驗室已發展多年之十字型預混紊流燃燒器,它在大水平圓管兩側各配備了一組反向旋轉風扇和空孔板,可產生強烈的近似等向性紊流場(u’’可高達8 m/s),並透過石英玻璃視窗,獲得火核成長與火焰傳遞影像。實驗開始前先將燃燒器內之空氣抽至近真空狀態,再將混合器內已預混之固定當量比的燃氣注入燃燒器內,並依據實驗所需之不同紊流強度條件來調節風扇轉頻。本研究以固定2.6 mm之不銹鋼電偶間距(約等同於甲烷最小熄滅距離),以及使用Velonex公司所製造之高壓脈衝產生器與脈衝變壓器來產生放電火花,配合放電電路串聯電阻的方法,可精確地控制放電火花的引燃能量。我們直接於放電電路上,配置高壓探針與Pearson電流感測器,來定量量測兩電偶間之實際放電能量,同時以高速攝影機擷取引燃期間之火花放電、火核成長和火焰傳遞影像。本實驗在層流靜止流場的MIE量測結果與Lewis & von Elbe (1987)以及Ziegler et al. (1984)所得到之數據非常相近,誤差在7%內。MIE值會隨?值往化學計量比phi= 1方向增加而下降,此趨勢在紊流條件下亦同。另在所有不同phi值條件下(phi= 0.6, 0.7, 0.8),MIE值均會隨著紊流強度(u’’/S_L)增加而逐漸增加。針對接近貧油可燃極限phi= 0.6 (S_L = 9 cm/s),我們發現MIE值有一重大轉變(transition),當u’’/S_L > 24,MIE值會驟昇。將其火核成長和火焰傳播影像與在適度紊流強度時之影像做比較,可以看出兩種相當不同的型態,即火焰由薄碎焰(flamelet)型態轉變為散佈狀火焰(distributed)型態,此一結果提供了預混燃燒狀態圖(phase diagram)中,散佈狀火燄區域存在的實驗證據,為一新發現。
摘要(英) This thesis aims to measure quantitatively the minimum ignition energy (MIE) of lean premixed methane/air mixtures over a very wide range of turbulent intensities (u’’/S_L), where S_L is the laminar burning velocity. MIE is an extremely important parameter that is relevant to material safety standards, ignition conditions, and stability and efficiency of subsequent combustion processes. In the present study, lean combustible methane/air mixtures at various equivalence ratios, phi = 0.6, 0.7, and 0.8, are applied in the cruciform burner equipped with a pair of counter-rotating fans and perforated plates at each end of its horizontal vessel to generate intense near-isotropic turbulence (u’’ can be up to 8 m/s). Using a high-speed CMOS camera, the flame kernel development and its subsequent flame propagation are recorded. Before a run, the burner was first evacuated and then lean methane/air mixtures at a fixed phi mixed in a separate mixing chamber were injected into the burner to 1atm. The fan frequency can be varied from 0 Hz up to 172 Hz. This study uses two stainless steel electrodes with sharp ends separated by 2.6 mm gap, that is just about the minimum quenching distance for methane. The electrodes’ spark discharge was produced by a high power pulse generator and a transformer. The discharge energy across the electrodes can be controlled using variable resistances and can be directly measured by a high pressure voltage probe and a Pearson current monitor together with an oscilloscope. The MIE data for the case of u’’/S_L = 0 are found to be very close to that obtained by Lewis & von Elbe (1987) and Ziegler et al. (1984) with no more than 7% difference. As phi increases toward the stoichiometry (phi = 1), values of MIE are significantly decreased. This trend is the same for both quiescent and turbulent cases. At any fixed values of phi(= 0.6, 0.7 or 0.8), values of MIE increase gradually with increasing values of u’’/S_L. It is found that there is a transition on values of MIE when u’’/S_L > 24. Across the transition, values of MIE increase abruptly and flame structures change from flamelet-like to distributed-like. This result provides the first experimental evidence that can be used to prove the existence of the distributed reaction zone regime in the well-known phase diagram for premixed turbulent combustion. This is a new finding.
關鍵字(中) ★ 最小引燃能量
★ 貧油預混紊流燃燒
★ 轉變
★ 甲烷燃燒
★ 薄碎焰和散佈狀火焰區域
關鍵字(英) ★ methane combustion
★ lean premixed turbulent combustion
★ flamelet and distributed regimes
★ Minimum ignition energy
★ transition
論文目次 摘要......i
英文摘要......ii
誌謝......iii
目錄......iv
圖表目錄......vii
符號說明......ix
第一章 前言......1
1.1 研究動機......1
1.2 問題所在......2
1.3 解決方案......4
1.4 論文架構......5
第二章 文獻回顧......6
2.1 火花引燃之種類與應用......6
2.2 放電引燃之分類......8
2.3 引燃能量相關參數......11
2.3.1 引燃極限與電偶幾何外型......12
2.3.2 電偶材料、熄滅距離與電偶間距......13
2.3.3 火花放電時間與引燃機率......14
2.3.4 火核成長與電偶直徑......15
2.3.5 紊流燃燒引燃能量......16
2.4預混紊流燃燒理論......17
2.4.1 Huygen's傳遞理論......17
2.4.2 預混紊流燃燒狀態圖(phase diagram)......18
第三章 實驗設備與量測方法......26
3.1 十字型預混紊流燃燒器......26
3.2 高壓放電儀器......28
3.3 火焰影像擷取系統......29
3.4 放電能量量測......29
3.5 問題簡化......31
3.6 實驗流程......32
第四章 結果與討論......38
4.1 火焰傳遞影像......38
4.1.1 薄片火焰與薄碎焰......38
4.1.2 散佈狀火焰......40
4.2貧油甲烷燃燒之MIE.....41
4.2.1靜態燃燒之MIE......41
4.2.2紊流燃燒之MIE......41
4.2.3甲烷加氫燃燒之MIE......42
4.3火焰傳遞分析......42
4.3.1典型甲烷靜態和紊流燃燒火焰傳遞......42
4.3.2典型甲烷靜態和紊流燃燒火焰平均半徑......43
4.4轉變(a transition)......43
第五章 結論與未來工作......58
5.1 結論......58
5.2 未來工作......59
參考文獻......60
參考文獻 Abdel-Gayed, R. G., Bradley, D., and McMahon M., “Turbulent flame propagation in premixed gases: theory and experiment”, Proc. Combust. Inst., Vol. 17, pp. 245-254 (1979).
Boudier, P., Henriot, S., Poinsot, T., and Baritaud, T. A., “A model for turbulent flame ignition and propagation in spark ignition energies”, Proc. Combust. Inst., Vol. 24, pp. 503-510 (1992).
Bracco, F.V., “Some Challenges in Engine Combustion, ” Paper Presented at the Fall Technical Meeting, The Combustion Institute, Eastern States Section, Dec. 3-5, Orlando, FL, (1990).
Bradley, D., “How fast can we burn?”, Proc. Combust. Inst., Vol. 24, pp. 247-262 (1992).
Bray, K. N. C., “Studies of the turbulent burning velocity”, Proc. Roy. Soc. (London) A, Vol. 431, pp. 315-335 (1990).
Bray, K. N. C., Libby, P. A., and Moss, J. B., “Scalar length scale variations in premixed turbulent flames”, Proc. Combust. Inst., Vol. 20, pp. 421-427 (1984).
Bray, K. N. C., Libby, P. A., and Moss, J. B., “Unified modeling approach for premixed turbulent combustion –part 1: general formulation”, Combust. Flame, Vol. 93, pp. 445-456 (1985).
Chang, N.W., Shy, S.S., Yang, S.I., and Yang, T.S., “Spatially resolved flamelet statistics for reaction rate modeling using premixed methane-air flames in a near-homogeneous turbulence”, Combust. Flame, Vol. 127 (No.1/2), pp. 1880-1894 (2001).
Correa, S., “Current Problems in Gas Turbine Combustion,” Paper Presented at the Fall Technical Meeting, The Combustion Institute, Eastern States Section, Dec. 3-5, Orlando, FL, (1990).
Damköhler, G., “The effect of turbulent on the flame velocity in gas mixtures”, Z. Elektrchem., Vol. 46, pp. 601-652 (1940). (English translation NASA Tech. Mem., Vol. 1112, 1947).
Fisher, F. A., “Some notes on sparks and ignition of fuels”, Tech. Mem., NASA/TM-2000-210077, Washington (2000).
Glassman, I., Combustion, 3rd Edition, Academic Press, San Diego (1996).
Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, (1988).
Ishii, K. Aoki, O., Ujiie, Y., and Kono, M., “Investignation of ignition by composite sparks under high turbulence intensity conditions”, Proc. Combust. Inst., Vol. 24, pp. 1793-1798 (1992).
Kono, M., Hatori, K., and Iinuma, K., “Investigation on ignition ability of composite sparks in flowing mixtures”, Proc. Combust. Inst., Vol. 20, pp. 133-140 (1984).
Kono, M., Niu, K. Tsukamoto, T., and Ujiie Y., “Mechanical of flame kernal formation produced by short duration sparks”, Proc. Combust. Inst., Vol. 22, pp. 1643-1649 (1988).
Law, C. K., Zhu, D. L., and Yu, G., “Propagation and extinction of stretched premixed flames”, Proc. Combust. Inst., Vol. 21, pp. 1419-1426 (1986).
Lewis, B., and von Elbe, G., Combustion, Flame and Explosions of Gases, 3rd Edition, Academic Press, London (1987).
Loeb, L. B., Fundamental Processes of Electrical Discharge in Gases, 1st Edition, John Wiley & Sons, New York (1939).
Maly, R., and Vogel, M., “Ignition and propagation of flame fronts in lean CH4-air mixture by the three mode of the ignition spark”, Proc. Combust. Inst., Vol. 17, pp. 821-831 (1979).
Nifuku, M., and Katoh, H., “Incendiary characteristics of electrostatic discharge for dust and gas explosion”, Journal of Loss Prevention in the Process Industries, Vol. 14, pp. 547–551 (2001).
Oancea, D., Razus, D., Munteanu, V., and Cojocea, I., “High voltage and break spark ignition of propylene/air mixtures at various initial pressures”, Journal of Loss Prevention in the Process Industries, Vol. 16, pp. 353-361 (2003).
Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge (2000).
Peters, N., “Laminar flamelet concepts in turbulent combustion”, Proc. Combust. Inst., Vol. 21, pp. 1231-1250(1986).
Poinsot, T., Venante, D., and Candel, S., “Quenching processes and premixed turbulent combustion diagram”, J. Fluid Mech., Vol. 228, pp. 561-606 (1991).
Shy, S.S., Lee, E.I., Chang, N.W., and Yang, S.I., “Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner”, Proc. Combust. Inst., Vol. 28, pp. 383-390 (2000a).
Shy, S.S., I, W.K., and Lin, M.L., “A new cruciform burner and its turbulence measurements for premixed turbulent combustion study”, Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114 (2000b).
Shy, S.S., Lin, W.J., and Peng, K.Z., “High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner”, Proc. Combust. Inst., Vol. 28, pp. 561-568 (2000c).
Shy, S.S., Lin, W.J., and Wei, J.C., “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019 (2000d).
Shy,S.S., Yang, S.I., Lin, W.J., and Su, R. C., “Turbulent burning velocities of premixed CH4/diluent/air flames in intense isotropic turbulence with consideration of radiate loss”, Combust. Flame, Vol. 143 (No.1/2), pp. 106-118 (2005).
Yang, S.I., and Shy, S.S., “Global quenching of premixed CH4/air flame: effects of turbulent straining equivalence ratio, and radiative heat loss”, Proc. Combust. Inst., Vol. 29, pp. 1841-1847 (2002).
Yang, T.S., and Shy, S.S., “Two-way interaction between solid particles and air turbulence: particle settling rate and turbulence modification measurements”, J. Fluid Mech., Vol. 526 pp. 171-216 (2005).
Williams, F.A., Combustion Theory, 2nd Edition, Addison-Wesley, Redwood City (1985).
Ziegler, G. F. W., Wagner, E. P., and Maly, R. R., “Ignition of lean methane-air mixtures by high pressure glow and arc discharges”, Proc. Combust. Inst., Vol. 20, pp. 1817-1824 (1984).
林文基 “甲烷與丙烷預混紊流燃燒速度的量測”,國立中央大學機械工程研究所,碩士論文(1999)。
陳彥志 “潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測” ,國立中央大學機械工程研究所,碩士論文(2002)。
楊授印 “預混紊流燃燒:碎形特性、當量比和輻射熱損失效應”, 國立中央大學機械工程研究所,博士論文(2003)。
指導教授 施聖洋(Sheng-Yang Shy) 審核日期 2006-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明