博碩士論文 92643007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.135.217.212
姓名 張子瑩(Tzu-Yin Chang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 應用遙測影像於地表熱通量平衡之研究
(A Study on Surface Energy Balance from Remote Sensing Data)
相關論文
★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究★ WVR、GPS及氣球探空觀測可降水量之比較
★ GPS斷層掃描估算大氣濕折射係數模式★ GPS觀測大氣閃爍之研究
★ GPS 氣象中地面氣象模式之改進★ 由GPS信號反演大氣濕折射度之數值模擬
★ 近即時GPS觀測可降水技術之研究★ 利用水氣資訊改善降水估計之研究
★ GPS掩星觀測反演與反演誤差探討★ 微波輻射計數位相關器之設計與實現
★ GPS與探空氣球資料觀測可降水量 與降雨之關係★ 利用GPS訊號估算對流層斜向水氣含量之研究
★ 利用遙測影像反演水稻田蒸發散量 之研究★ 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究
★ 利用MODIS影像於水稻田蒸發散之研究★ 分析以全球定位系統近即時估計可降水之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 遙測技術被廣泛的應用在大氣、海洋、水文、農業、都市計畫等領域上,而地表與大氣的能量交換情形,也與這些領域的研究息息相關,因此應用遙測技術於地表能量收支平衡的議題,近年來日趨重要。
本研究利用多光譜遙測影像,以地表能量平衡理論為核心,推估區域尺度的地表熱通量包括土壤熱通量、可感熱及潛熱通量。探討的區域類型包含:亞熱帶平原區,以台灣嘉義平原為代表;熱帶山區,以泰國清邁MaeSa集水區為代表。在平原區的研究上,影像所推估的潛熱通量與地面測站相比,其相關係數可達到78%以上,如以高空間解析度的空載影像所推估蒸發散比值與地面測站相比,甚至只有1%的估算誤差,因此在影像來源充足的情況下,透過模組的推估,是可獲得相當高的精度。在山區的研究上,著重於修正山區裡連續性的地形起伏所造成的遮敝效應,經過太陽短波輻射量、大氣穿透率、地表溫度等三項因子的校正後,影像所估算的潛熱通量與地面測站相比,不但在相關係數從56%提高至75%,RMSE也從75 Wm-2降至73Wm-2,可有效的提升推估的精度。
在地表熱通量的應用上,主要是分析十四種不同地表覆蓋類別的地表熱通量分配情形與地表溫度之間的關係,大致而言,水體、植被、人工建地這三者的能量分配情形是:潛熱通量逐漸減少,可感熱通量逐漸增加,地表溫度也逐漸增高;對於不同類別的植生覆蓋,如常綠闊葉林、農作物、草地等也可估算其對降低地表溫度的程度。透過不同地表覆蓋物的地表熱通量分析後,可感熱通量可延伸應用於大氣溫度的推估,以評估熱島效應強度;潛熱通量可延伸應用與全球濕指數比對,可進一步成為乾旱預警的指標。
本研究強化遙測地表熱通量於亞熱帶及熱帶地區的區域研究,以期未來可完成大陸尺度或全球尺度的通用模式,進而提升成完整的全球通用模組,以對全球氣象監測、水資源管理做跨區域、跨國家的有效應用。
摘要(英) Remote sensing technology has been widely applied in many aspects such as atmosphere, oceanography, hydrology, agriculture, and urban planning. The energy interaction between land surface and atmosphere is closely related to these fields of study. Therefore, increased effort has been devoted to the surface energy budget estimation from remote sensing data during the past few decades.
The proposed methodology for measuring regional surface heat fluxes, including soil heat flux, sensible heat flux and latent heat flux, by using multi-spectral remote sensing imagery and auxiliary data was based on the principle of surface energy and radiation balance. Two regional types are included in this study: the subtropical plain- Taiwan’s Chiayi Plain as represented, and the tropical mountain watershed- MaeSa Watershed in ChingMai, Thailand as represented. In Chiayi Plain, the correlation coefficient of MODIS-retrieved latent heat flux with in situ corresponding observations exceeded 0.78, and the estimation error of evaporate fraction retrieved from airborne image was even only 1%. If the spatial resolution of remote sensing data is fine enough, the model can provide high accuracy in the surface heat flux estimation. In MaeSa Watershed, three modifications, including incoming shortwave radiation, atmospheric transmissivity, and surface skin temperature, are recommended to improve the accurate evapotranspiration estimation. The correlation coefficient between our proposed model with DEM_ASTER and the in situ measurements was improved from 56% to 75%, and the RMSEs for soil heat, sensible heat and latent heat fluxes from our proposed model with DEM_ASTER were lower than those from the flat surface model and the SEBAL Mountain model.
For the surface heat flux applications, MODIS satellite-observed surface skin temperature and land surface heat fluxes were used to analyze 14 land cover types. For water bodies, vegetation, and artificial buildings, there was a gradual decrease in latent heat flux, but a gradual increase in sensible heat flux and surface temperature. The results demonstrated that enlarging wet surface such as evergreen broadleaf or water bodies can effectively reduce the temperature rising. Furthermore, we used the sensible heat flux to quantify the magnitude of urban heat island effect and compared the latent heat flux with the Global Vegetation Moisture Index (GVMI). The outcome suggested that the sensible heat flux and the latent heat flux can be considered as indicators of the urban heat island effect and the drought prediction system, respectively.
This study focused on the tropical and subtropical surface energy budget extracted from the remote sensing data, at a regional scale. The consequences will provide an important experience for continental-scale or global-scale models which can then be used for global weather prediction and transnational water management in the future.
關鍵字(中) ★ 熱通量
★ 地表能量平衡
★ 遙測
★ 蒸發散
★ 熱島效應
關鍵字(英) ★ remote sensing
★ surface energy budget
★ heat flux
★ evapotranspiration
★ heat island effect
論文目次 應用遙測影像於地表熱通量平衡之研究 1
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 I
表目錄 III
第1章. 前言 1
1.1. 動機與目的 1
1.2. 文獻回顧 3
1.3. 章節撰寫架構 13
第2章. 理論模式與觀測方式 15
2.1. 地表能量平衡理論 15
2.1.1. 淨輻射量 15
2.1.2. 土壤熱通量 17
2.1.3. 可感熱通量 19
2.1.4. 潛熱通量 23
2.2. 地面測站觀測方式 24
2.2.1. Bowen Ratio 觀測法 24
2.2.2. Eddy covariance觀測法 27
第3章. 遙測觀測原理與地表參數估算 32
3.1. 遙測觀測原理 32
3.2. 遙測影像基本處理流程 35
3.2.1. 幾何座標校正 35
3.2.2. 輻射校正-灰度值轉至天頂反射率 35
3.2.3. 大氣校正-天頂反射率至地表反射率 39
3.3. 本研究所需的遙測地表參數 42
3.3.1. 地表反照率 42
3.3.2. 常態化差異植生指數 43
3.3.3. 葉面積指數 44
3.3.4. 地表放射率 44
3.3.5. 地表溫度 45
第4章. 推估平原區的蒸發散量 47
4.1. 研究區域及研究資料簡介 47
4.1.1. 研究區簡介 47
4.1.2. 地面測站資料 48
4.1.3. 遙測影像資料 51
4.2. 影像處理與地表參數推估 53
4.2.1. 高空間解析度影像組處理 54
4.2.2. MODIS影像處理 56
4.3. 結果與討論 57
4.3.1. 地表熱通量的空間分布情形 57
4.3.2. 地表熱通量與不同地表覆蓋之間的關係 60
第5章. 平原區地表熱通量應用-評估熱島效應之強度 65
5.1. 研究區域及研究資料簡介 65
5.1.1. 研究區簡介 65
5.1.2. 研究資料簡介 66
5.2. 資料處理與流程 67
5.3. 結果與討論 70
第6章. 加入地形修正以推估山區的蒸發散量 74
6.1. 研究區域及研究資料簡介 74
6.1.1. 研究區簡介 74
6.1.2. 地面測站資料 75
6.1.3. 遙測影像資料 77
6.1.4. 數值地形模式(Digital Elevation Model , DEM) 80
6.2. 影像處理與地表參數推估 81
6.2.1. 遙測影像處理流程 82
6.2.2. 地形修正 86
6.3. 結果與討論 88
6.3.1. 比較地表熱通量的推估 88
6.3.2. 蒸發散量與全球植生濕指數比較 91
第7章. 結論與建議 93
7.1. 平原模式結論:以嘉義平原為例 94
7.2. 地表熱通量應用:以台中熱島效應為例 95
7.3. 山區模式結論:以MaeSa集水區為例 95
7.4. 總結與未來工作 96
參考文獻 98
參考文獻 Allen, R. G., M. A., M. Tasumi, W. Bastiaanssen, W. Kramber, and H. Anderson (2001), Evapotranspiration from Landsat (SEBAL) for water rights managementand compliance with multi-state water compacts, IGARSS, 2, 830-833.
Allen, R. G., M. Tasumi, and R. Trezza (2007), Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model, Journal of Irrigation and Drainage Engineering, 133, 380-394.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998), Crop evapotranspiration guidelines for computing crop water requirements, in FAO Irrigation and Drainage Paper No. 56, edited, Food and Agricultural Organization of the United Nations, Rome.
Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski (1997), A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing Remote Sensing of Environment, 60(2), 195-216.
Baldocchi, D. D., D. R. Matt, B. A. Hutchison, and R. T. McMillen (1984), Solar-radiation within an oak hickory forest - An evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods, Agricultural and Forest Meteorology, 32(3-4), 307-322.
Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag (1998a), A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation, Journal of Hydrology, 213(1-4), 198-212.
Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. F. Moreno, G. J. Roerink, and T. van der Wal (1998b), A remote sensing surface energy balance algorithm for land (SEBAL) - 2. Validation, Journal of Hydrology, 213(1-4), 213-229.
Bastiaanssen, W. G. M. (2000), SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey, Journal of Hydrology, 229(1-2), 87-100.
Bastiaanssen, W. G. M., D. J. Molden, and I. W. Makin (2000), Remote sensing for irrigated agriculture: examples from research and possible applications, Agricultural Water Management, 46(2), 137-155.
Bastiaanssen, W. G. M., E. J. M. Noordman, H. D. Pelgrum, G., B. P. Thoreson, and R. G. Allen (2005), SEBAL model with remotely sensed data to improve water-resources management under actual field conditions, ASCE Journal of Irrigation and Drainage Engineering, 131, 85-93.
Batra, N., S. Islam, V. Venturini, G. Bisht, and L. Jiang (2006), Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains, Remote Sensing of Environment, 103, 1-15.
Brest, C. L., and G. S. N. (1987), Deriving surface albedo measurements from narrow band satellite data, International Journal of Remote Sensing, 8, 351-367.
Businger, J. A., Wyngaard, J. C., Izumi, Y., Bradley,E. F. (1971), Flux-profile relationships in the atmospheric surface layer, Journal of the Atmospheric Sciences, 28, 181-189.
Carlson, T. N., E. M. Perry, and T. J. Schmugge (1990), Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields, Agriculture and Forest Meteorology, 52, 45-69.
Carlson, T. N., R. R. Gillies, and T. J. Schmugge (1995), An interpretation of methodologies for indirect measurements of soil water content, Agriculture and Forest Meteorology, 77, 191-205.
Ceccato, P., S. Flasse, and J.-M. Gregoire (2002), Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications, Remote Sensing of Environment, 82(2-3), 198-207.
Choudhury, B. J. (1989), Estimating evaporation and carbon assimilation using infrared temperature data: vistas in modeling, in Theory and Applications of Optical Remote Sensing, edited, pp. 628-690, Wiley, New York.
Cleugh, H. A., R. Leuning, Q. Z. Mu, and S. W. Running (2007), Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sensing of Environment, 106(3), 285-304.
Cothier, B. E., K.L.Clawson, P. J. Printer, M.S. Moran, R. J. Reginato, and R. D. Jackson (1986), Estimation of soil heat flux from net radiation during the growth of alfalfa, Agricultural and Forest Meteorology, 37, 312-329.
Courault, D., B. Seguin, and A. Olioso (2005), Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches, Irrigation and Drainage Systems, 19, 223-249.
Duffie, J. A., and W. A. Beckman (1991), Solar engineering of thermal processes, John Wiley & Sons.
Fan, L., S. Liu, C. Bernhofer, H. Liu, and F. H. Berger (2007), Regional land surface energy fluxes by satellite remote sensing in the Upper Xilin River Watershed (Inner Mongolia, China), Theoretical and Applied Climatology, 88, 231-245.
French, A. N., T. J. Schmugge, and W. P. Kustas (2000), Estimating surface fluxes over the SGP site with remotely sensed data Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 167-172.
Gao, W., R. L. Coulter, B. M. Lesht, J. Qui, and M. L. Weseley (1998), Estimating clear-sky regional surface fluxes in the southern great plains atmospheric radiation measurement site with ground measurements and satellite observations, Journal of Applied Meteorology and Climatology, 37, 5-22.
Garatuza-Payan, J., and C. J. Watts (2005), The use of remote sensing for estimating ET of irrigated wheat and cotton in NorthwestMexico, Irrigation and Drainage Systems, 19, 301-320.
Gieske, A. (2003), The iterative flux-profile method for remote sensing applications, International Journal of Remote Sensing, 24(1), 3291-3309.
Gowda, P. H., J. L. Chávez, T. A. Howell, T. H. Marek, and L. L. New (2008), Surface energy balance based evapotranspiration mapping in the Texas high plains, Sensors, 8, 5186-5201.
Granger, R. J. (2000), Satellite-derived estimates of evapotranspiration in the Gediz basin, Journal of Hydrology, 229(1-2), 70-76.
Hsieh, P. F., L. C. Lee, and N.-Y. Chen (2001), Effect of Spatial Resolution on Classification Errors of Pure and Mixed Pixels in Remote Sensing, IEEE Trans. Geosci. Remote Sensing, 39(12), 2657-2663.
Idso, S. B., R. J. Reginato, and R. D. Jackson (1977), An equation for potential evaporation from soil, water,and crop surfaces adaptable to use by remote sensing, Geophysical Research Letters(4), 187-188.
Jackson, R. D., R. J. Reginato, and S. B. Idso (1977), Wheat canopy temperature: a practical tool for evaluating water requirements, Water Resources Research, 13, 651-656.
Jensen, J. R. (2005), Remote Sensing of Environment: An Earth Resource Perspective, 2nd Edition ed., Upper Saddle River: Prentice-Hall, Inc., New Jersey.
Jiang, L., and S. Islam (1999), A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations, Geophysical Research Letters, 26, 2773-2776.
Jiang, L., and S. Islam (2001), Estimation of surface evaporation map over southern Great Plains using remote sensing data, Water Resource Research, 37, 329-340.
Jiang, L., and S. Islam (2003), An intercomparison of regional latent heat flux estimation using remote sensing data, International Journal of Remote Sensing, 24, 2221-2236.
Kato, S., and Y. Yamaguchi (2007), Estimation of storage heat flux in an urban area using ASTER data, Remote Sensing of Environment, 110(1), 1-17.
Kustas, W. P., B. J. Choudhury, M. S. Moran, R. J. Reginato, R. D. Jackson, L. W. Gay, and H. L. Weaver (1989), Determination of sensible heat flux over sparse canopy using thermal infrared data, Agricultural and Forest Meteorology, 44, 197-216.
Kustas, W. P., and J. M. Norman (1996), Use of remote sensing for evapotranspiration monitoring over land surfaces Hydrological Sciences, 41, 495-516.
Kustas, W. P., and J. M. Norman (2000), A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces, Agronomy Journal, 92, 847-854.
Lagouarde, J.-P. (1991), Use of NOAA-AVHRR data combined with an agrometeorological model for evaporation mapping, International Journal of Remote Sensing, 12, 1853-1864.
Lambin, E. F., and D. Ehrlich (1996), The surface temperature-vegetation index space for land cover and land-cover change analysis, International Journal of Remote Sensing, 17, 463-487.
Landsberg, H. E. (1981), The urban climate, Academic Press, New York.
Laymon, C. A., and D. A. Quattrochi (2004), Estimating spatially distributed surface fluxes in a semi-arid Great Basin desert using Landsat TM thermal data, in Thermal Remote Sensing in Land Surface Processes, edited by D. A. Quattrochi and J. C. Luvall, pp. 133-159, CRC Press.
Lee, X., W. J. MASSMAN, and B. LAW (2004), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Kluwer Academic Publishers, Dordrecht.
Li, F., and T. J. Lyons (2002), Remote estimation of regional evapotranspiration, Environmental Modelling and Software, 17(1), 61-75.
Li, Z. L., R. L. Tang, Z. M. Wan, Y. Y. Bi, C. H. Zhou, B. H. Tang, G. J. Yan, and X. Y. Zhang (2009), A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data, Sensors, 9(5), 3801-3853.
Liou, Y.-A., and A. W. England (1996), Annual temperature and radiobrightness signatures for bare soils, IEEE Trans. Geosci. Remote Sensing, 34, 981-990.
Liou, Y.-A., and A. W. England (1998a), A land surface process/radiobrightness model with coupled heat and moisture transport in soil, IEEE Trans. Geosci. Remote Sensing, 36, 273-286.
Liou, Y.-A., and A. W. England (1998b), A land surface process/radiobrightness model with coupled heat and moisture transport for freezing soils, IEEE Trans. Geosci. Remote Sensing, 36, 669-677.
Liou, Y.-A., E. J. Kim, and A. W. England (1998), Radiobrightness of prairie soil and grassland during dry-down simulations, Radio Science, 33, 259-265.
Liou, Y.-A., J. Galantowicz, and A. W. England (1999a), A land surface process/radiobrightness with coupled heat and moisture transport for prairie grassland, IEEE Trans. Geosci. Remote Sensing, 37(4), 1848-1859.
Liou, Y.-A., Y. C. Tzeng, and K. S. Chen (1999b), A neural network approach to radiometric sensing of land surface parameters, IEEE Trans. Geosci. Remote Sensing, 37(6), 2718-2724.
Liou, Y.-A., S.-F. Liu, and W.-J. Wang (2001), Retrieving soil moisture from simulated brightness temperatures by a neural network, IEEE Trans. Geosci. Remote Sensing, 39(8), 1662-1673.
Mecikalski, J. R., G. R. Diak, M. C. Anderson, and J. M. Norman (1999), Estimating fluxes on continental scales using remotely sensed data in an atmospheric-land exchange model, Journal of Applied Meteorology, 38, 1352-1369.
Menenti, M., and B. Choudhury (1993), Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range, Proceedings of IAHS conference on Land Surface Processes, 212, 561-568.
Menenti, M., and J. C. Ritchie (1994), Estimation of effective aerodynamic roughness of Walnut Gulchwatershed with laser altimeter measurements, Water Resource Research, 30(5), 1329-1337.
Mildrexler, D. J., M. S. Zhao, F. A. Heinsch, and S. W. Running (2007), A new satellite-based methodology for continental-scale disturbance detection, Ecological Applications, 17(1), 235-250.
Moran, M. S., and R. D. Jackson (1991), Assessing the spatial distribution of evapotranspiration using remotely sensed inputs, Journal of Environmental Quality, 20, 525-537.
Moran, M. S., T. R. Clarke, Y. Inoue, and A. Vidal (1994), Estimating crop water deficit using the relationship between surface-air temperature and spectral vegetation index, Remote Sensing of Environment, 49, 246-363.
Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running (2007), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111, 519-536.
Neale, C. M. U., H. Jayanthi, and J. L. Wright (2005), Irrigation water management using high resolution airborne remote sensing Irrigation and Drainage Systems, 19(3-4), 321-336.
Norman, J. M., W. P. Kustas, and K. S. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agricultural and Forest Meteorology, 77(3-4), 263-293.
Ogée, J., E. Lamaud, Y. Brunet, P. Berbigier, and J. M. Bonnefond (2001), A long-term study of soil heat flux under a forest canopy, Agricultural and Forest Meteorology, 106(3), 173-186.
Olioso, A., C. H., D. Courault, and J. P. Wigneron (1999), Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models, Remote Sensing of Environment, 68, 341-356.
Paulson, C. A. (1970), The mathematical representation of wind speed and temperature profile in the unstable atmospheric surface layer, Journal of Applied Meteorology, 9(6), 857-861.
Pawan, K. S. (2004), Diagnosing Irrigation Water Resources with Multi-sensor Remote Sensing and GIS Techniques- A Case Study of the Roxo Dam Irrigation System, M.S. thesis, International Institute for Geo-Information Science and Earth Observation, Enschede.
Qin, Z., W. Li, M. Gao, and H. o. Zhang (2006), An algorithm to retrieve land surface temperature from ASTER thermal band data for agricultural drought monitoring, SPIE.
Roerink, G. J., Z. Su, and M. Menenti (2000), S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere, 25(2), 147-157.
Rosenberg, N. J., Blad, B. L., Verma, S. B. (1983), Microclimate: The Biological Environment (second edition), John Wiley & Sons, Inc, New York.
Saito, K., S. Ogawa, M. Aihara, and K. Otowa (2001), Estimates of LAI for forest management in Okutama, paper presented at ACRS 2001-22nd Asian Conference on Remote Sensing.
Santos, C., I. J. Lorite, M. Tasumi, R. G. Allen, and E. Fereres (2008), Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level, Irrigation Science, 26, 277-288.
Sarwar, A., and R. Bill (2003), Estimation of surface heat fluxes in the Indus Basin using ASTER imagery, Pakistan Journal of Water Resources, 7(1), 53-64.
Schmugge, T. J., W. P. Kustas, and K. S. Humes (1998), Monitoring land surface fluxes using ASTER observations, IEEE Trans. Geosci. Remote Sensing, 36(5), 1421-1430.
Seguin, B., and B. Itier (1983), Using midday surface temperature to estimate daily evaporation from satellite thermal IR data, International Journal of Remote Sensing, 4, 371-383.
Seguin, B., D. Courault, and M. Gu´erif (1994), Surface temperature and evapotranspiration: Application of local scale methods to regional scales using satellite data, Remote Sensing of Environment, 49, 287-295.
Singh, R. K., A. Irmak, S. Irmak, and D. L. Martin (2008), Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska, Journal of Irrigation and Drainage Engineering, 134, 273-285.
Sobrino, J. A., M. Gómez, J. C. Jiménez-Muñoz, and A. Olioso (2007), Application of a simple algorithm to estimate the daily evapotranspiration from NOAA-AVHRR images for the Iberian Peninsula, Remote Sensing of Environment, 110, 139-148.
Su, Z. (2002), The surface energy balance system (SEBS) for estimation of turbulent heat fluxes, Hydrology and Earth System Sciences, 6, 85-99.
Teixeira, A. H. D. C., W. G. M. Bastiaanssen, M. D. Ahmadd, and M. G. Bos (2009a), Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil Part A: Application to the regional scale, Agricultural and Forest Meteorology, 149, 462-476.
Teixeira, A. H. D. C., W. G. M. Bastiaanssen, M. D. Ahmadd, and M. G. Bos (2009b), Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco river basin, Brazil Part B: Application to the regional scale., Agricultural and Forest Meteorology, 149, 477-490.
Thom, A. S. (1975), Momentum, mass and heat exchange of plant communities, in Vegetation and the Atmosphere, edited by J. L. Monteith, pp. 57-109, London.
Timmermans, W. J., W. P. Kustas, M. C. Anderson, and A. N. French (2007), An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sensing of Environment, 108, 369-384.
Twine, T. E., W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. Meyers, J. H. Prueger, P. J. Starks, and M. L. Wesely (2000), Correcting eddy-covariance flux underestimates over a grassland, Agricultural and Forest Meteorology, 103(3), 279-300.
Valor, E., and V. Caselles (1996), Mapping land surface emissivity from NDVI:Application to European, African, and south American area, Remote Sensing of Environment, 57, 167-184.
van de Griend, A. A., and M. Owe (1992), On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, International Journal of Remote Sensing, 14(6), 1119-1131.
Wallace, J. M., and P. V. Hobbes (1977), Atmospheric Science: An Introductory Survey, Academic Press.
Wan, Z., and J. Dozier (1996), A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Trans. Geosci. Remote Sensing, 34(4), 892-905.
Wang, J., Y. Ma, M. Menenti, W. G. M. Bastiaanssen, and Y. Mitsuta (1995), The scaling-up of processes in the heterogeneous landscape of HEIFE with the aid of satellite remote sensing, Journal of the Meteorological Society of Japan, 73(6), 1235-1244.
Waters, R., R. G. Allen, M. Tasumi, R. Trezza, and W. G. M. Bastiaanssen (2002), SEBAL: Surface Energy Balance Algorithms for Land, NASA EOSDIS, USA.
Webb, E. K. (1970), Profile relationships: the log-linear range and extension to strong stability, Quarterly Journal of the Royal Meteorological Society(96), 67-90.
Wilson, K., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B. E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma (2002), Energy balance closure at FLUXNET sites, Agricultural and Forest Meteorology, 113(1-4), 223-243.
余竹樺, 劉說安, and 張子瑩 (2009), 利用MODIS 影像反演嘉義地區水稻田蒸發散量之研究, 航測及遙測學刊, 12(4), 319-334.
杜榮鴻 (2005), 應用MODIS影像估算潛勢蒸發散量之研究, 國立成功大學水利及海洋工程研究所碩士論文.
陳姜琦 (2002), 應用衛星遙測於區域蒸發散量之估算, 國立成功大學碩士論文.
陳奕穎 (2004), 發展遙測資料反演可感熱與潛熱通量之研究, 國立中央大學水文科學研究所碩士論文.
謝祥雲 (1995), 利用陀螺儀於非靜止平台上校正通量之方法, 中興大學環境工程學系所, 台中市.
鍾譯靚 (2001), 利用衛星遙測估算蒸發散量與熱通量之研究, 國立台灣大學碩士論文.
指導教授 劉說安(Yuei-An Liou) 審核日期 2010-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明