博碩士論文 966203025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.133.127.147
姓名 孫允斌(Yun-Pin Sun)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 粒子束-電漿不穩定中的碰撞效應
(Collisional Effects on the Beam-Plasma Instability)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,碰撞效應對於電漿粒子群體運動的影響再度成為一項重要的議題。這篇論文主要探討碰撞對於粒子束-電漿不穩定 (beam-plasma instability) 的影響。我們主要的工作是理論數值計算不同程度的碰撞率對於粒子束-電漿系統中不穩定波之線性成長率 (linear growth rate) 的影響。我們利用 Lenard-Bernstein (LB) 碰撞算子來描述粒子的碰撞行為並且將一階微擾的Boltzmann-Poisson系統以Hermite多項式展開並解出其數值解。此理論計算本質上是一個特徵值問題,找出令此系統自洽 (self-consistent) 的特徵模 (eigenmode) 後,即可得到系統的線性成長率。除了理論計算之外,我們也會提供粒子格點法 (Particle-in-Cell) 的模擬來支持理論數值計算的結果。根據我們的結果,無論是理論數值計算或者是數值模擬,均顯示粒子束-電漿系統中不穩定波的線性成長率會隨著粒子碰撞率的提高而有下降的趨勢。
摘要(英) There is renewed interest in the effects of Coulomb collisions on the collective behavior of plasmas in recent years. This thesis investigates the effects on beam-plasma instability. We focus on the linear regime of the instability and consider that how collisions affect the linear growth rate in the beam-plasma system. The linearized Boltzmann-Poisson equations including the Lenard-Bernstein (LB) collision operator, which is used to describe Coulomb collisions among the plasma particles, are solved by expanding the perturbed distribution function in terms of Hermite polynomials. This problem is treated as an eigenvalue problem and which yields the eigenmodes of this system, hence the growth rate of the instability. We also perform the simulation results by means of Particle-in-Cell (PIC) simulation to support the theoretical calculation. Both theoretical calculation and simulation show a decreasing linear growth rate as the collision rate increases.
關鍵字(中) ★ 碰撞
★ 電漿不穩定
★ 電漿
關鍵字(英) ★ plasma
★ beam-plasma instability
★ collision
★ LB collision
論文目次 摘要 .................................................... i
Abstract ............................................... ii
誌謝 .................................................. iii
Table of contents ...................................... iv
List of Figures ......................................... v
Chapter 1 Introduction ................................. 1
Chapter 2 Collision Model and Research Methods ......... 9
2.1 Lenard-Bernstein (LB) Collision Model ............... 9
2.1.1 Velocity Dissipation Simulation (Equations of motion) ..... 11
2.2 Eigenfunction Expansion ............................ 15
2.3 Particle-in-Cell (PIC) Simulation .................. 16
2.3.1 Charge Assignment and Field Equations ............ 19
2.3.2 Dimensionless Equations .......................... 21
Chapter 3 Eigenmodes of the Collisional Beam-Plasma System ..... 24
3.1 Contribution from Bulk Particles ................... 25
3.2 Contribution from Beam Particles ................... 27
3.3 Eigenmode Solutions ................................ 28
Chapter 4 Results ..................................... 29
Chapter 5 Discussion and Conclusion ................... 33
References ............................................. 36
Appendix A Vlasov Equation and Plasma Dispersion ...... 38
Appendix B Physical Constants ......................... 43
Appendix C 1D LB collision coupled Electrostatic PIC code ..... 44
參考文獻 1. A. Lenard and Ira B. Bernstein, Plasma Oscillations with Diffusion in Velocity Space, Phy. Rev. 112, 5, 1456 (1958).
2. F. Valentini and P. Veltri, Effect of velocity diffusion on the propagation of nonlinear plasma waves, EPL. 81, 15002 (2008).
3. C. S. Ng et al., Kinetic Eigenmodes and Discrete Spectrum of Plasma Oscillations in a Weakly Collisional Plasma, PRL. 83, 10, 1974 (1999).
4. M. W. Anderson and T. M. O’Neil, Collisional damping of plasma waves on a pure electron plasma column, Phys. Plasmas 14, 112110 (2007).
5. W. E. Drummond et al., Nonlinear Development of the Beam-Plasma Instability, Phys. Fluids 13, 2422 (1970).
6. T. M. O’Neil et al., Nonlinear Interaction of a Small Cold Beam and a Plasma, Phys. Fluids 14, 6, 1204 (1971).
7. R. L. Morse and C. W. Nielson, Numerical Simulation of Warm Two-Beam Plasma, Phys. Fluids 12, 11, 2418 (1969).
8. F. Engelmann et al., Nonlinear Effects from Vlasov's Equation, Phys. Fluids 6, 2, 266 (1963).
9. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Taylor & Francis, ISBN 0750301171, pp 110-121 (1991).
10. M. G. Paterlini and D. M. Ferguson, Constant temperature simulations using the Langevin equation with velocity Verlet integration, Chem. Phys. 236, 243-252 (1998).
11. J. Virtamo and H. Tuomisto, Verification of a simple collision operator for one- dimensional plasma by simulation experiments, Phys. Fluids 22, 1, 172 (1978).
12. S. De Souza-Machado et al., Kinetic modes in a hot magnetized and weakly collisional plasma, Phys. Plasmas 6, 6, 2323 (1999).
13. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Taylor & Francis, ISBN 0852743920 (1989).
14. C. K. Birdsall, Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC, IEEE Trans. Plasma Sci. 19, 2, 65 (1991).
15. J. M. Dawson, Particle Simulation of Plasmas, Rev. Mod. Phys. 55, 2, 403 (1983).
16. Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd Edition, Springer, ISBN 0306413329 (2006).
指導教授 林留玉仁、劉正彥
(Y. R. Lin-Liu、J. Y. Liu)
審核日期 2010-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明