博碩士論文 952204008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.118.195.208
姓名 謝琪芬(Hsieh Chi-Fen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶表沒食子酸酯型兒茶素酸酯抑制胰島素與第一型內皮素刺激脂肪細胞的葡萄糖攝入
(Green tea (-)-epigallocatechin gallate inhibits insulin and endothelin-1 stimulation of adipocyte glucose uptake)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究已指出胰島素、抗胰島素激素、第一型內皮素和表沒食子酸酯型兒茶素酸酯分別會調節肥胖症和脂肪堆積。本研究探討3T3-L1 和C3H10T1/2脂肪細胞中表沒食子酸酯型兒茶素酸酯調節胰島素和調節第一型內皮素刺激葡萄糖攝入所涉及的途徑。結果發現表沒食子酸酯型兒茶素酸酯抑制胰島素和抑制第一型內皮素刺激脂肪細胞的葡萄糖攝入,且會隨表沒食子酸酯型兒茶素酸酯劑量升高和處理時間增長而逐漸增強其抑制效果;以5-10μM濃度的表沒食子酸酯型兒茶素酸酯處理兩個小時後會減少50%-80%胰島素或是第一型內皮素所刺激的葡萄糖攝入量。表沒食子酸酯型兒茶素酸酯劑量相關抑制胰島素和第一型內皮素刺激葡萄糖攝入的效應,也在3T3 L1和C3H10T1/2前脂肪細胞,C2C12肌肉纖維母細胞和H4IIEC3肝癌細胞上觀察到。此外,表沒食子酸酯型兒茶素酸酯的抑制效果比表兒茶素、表沒食子兒茶素和表兒茶素沒食子酸酯更有效的多,這表示是一種兒茶素類型相關的效應。在脂肪細胞裡鑑定到一個已經在肺癌細胞裡推測為表沒食子酸酯型兒茶素酸酯接受子 [已知為67-kilodalton laminin接受子(67LR)]。將脂肪細胞前處理67LR 抗體,可以防止表沒食子酸酯型兒茶素酸酯對胰島素或者第一型內皮素增加葡萄糖攝入的影響。而且,前處理脂肪細胞AMPK抑制劑,例如compound C,會中止表沒食子酸酯型兒茶素酸酯抗胰島素和抗第一型內皮素葡萄糖攝入的影響,但前處理GSH 活化劑,例如N-acetyl-L –cysteine,則沒有影響其效果。這些數據顯示在脂肪細胞中表沒食子酸酯型兒茶素酸酯抗胰島素和抗第一型內皮素葡萄糖攝入的影響是透過67LR和AMPK的途徑,而不是透過GSH途徑。有趣的是,表沒食子酸酯型兒茶素酸酯會提升抗胰島素抑制胰島素激素對脂肪細胞葡萄糖攝入的效果,並且會降低胰島素和第一型內皮素對於葡萄糖攝入上的協合效應。由於葡萄糖在脂肪細胞內會代謝而產生三酸甘油酯的前驅物,所以本研究的結果也許可以支持表沒食子酸酯型兒茶素酸酯會調節激素調解脂質的含量。
摘要(英) Insulin, resistin, endothelin-1 (ET-1), and (-)-epigallocatechin gallate (EGCG) have been reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin- and/or ET-1-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin and/or ET-1 stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased the insulin- or ET-1-stimulated glucose uptake by 50%-80% was approximately 5-10 μM for a range of 2 h. The dose-dependent effect of EGCG in suppressing the insulin and ET-1 stimulation of glucose uptake was also observed in 3T3-L1 and C3H10T1/2 preadipocytes, C2C12 myoblast, and H4IIEC3 hepatoma cells. At 10 μM EGCG was more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin-3-gallate. This suggests a catechin type-dependent effect. A putative EGCG receptor [also known as the 67-kilodalton laminin receptor (67LR)] was discovered in lung cancer cells and then identified in fat cells. Pretreatment of adipocytes with 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin- or ET-1-increased glucose uptake in adipocytes. Moreover, pretreatment with the AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with the GSH activator, such as N-acetyl-L-cysteine, blocked the anti-insulin and anti-ET-1 effects of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin and anti-ET-1 actions on adipocyte glucose uptake via the 67LR and AMPK, but not GSH, pathways. Interestingly, EGCG was found to enhance the anti-insulin effect of resistin on adipocyte glucose uptake, and it reduced the synergistic effects of insulin and ET-1 on adipocyte glucose uptake. As glucose serves as the metabolite to produce one of the precursors of triglycerides, results of this study may possibly support that EGCG modulates hormone-mediated fat content.
關鍵字(中) ★ 綠茶
★ 表沒食子酸酯型兒茶素酸酯
★ 胰島素
★ 第一型內皮素
★ 脂肪細胞
★ 葡萄糖攝入
關鍵字(英) ★ Green tea
★ (-)-epigallocatechin gallate
★ insulin
★ endothelin-1
★ adipocyte
★ glucose uptake
論文目次 Abstract I
中文摘要 II
Contents III
List of figures IV
Abbreviations VI
Introduction 1
Materials and Methods 6
Results 14
Part 1 14
Part 2 19
Discussion 25
Part 1 25
Part 2 27
Conclusion 30
References 31
Appendix 55
參考文獻 References
1. Sabu MC, Smitha K, Kuttan R 2002 Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83:109-116
2. Morre DJ, Bridge A, Wu LY, Morre DM 2000 Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture. Biochem Pharmacol 60:937-946
3. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K, Fujiki H 1999 Green tea and cancer chemoprevention. Mutat Res 428:339-344
4. Uchida S, Ozaki M, Suzuki K, Shikita M 1992 Radioprotective effects of (-)-epigallocatechin 3-O-gallate (green-tea tannin) in mice. Life Sci 50:147-152
5. Lee MS, Kim CT, Kim Y 2009 Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab 54:151-157
6. Murase T, Misawa K, Haramizu S, Hase T 2009 Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 78:78-84
7. Wolfram S 2007 Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26:373S-388S
8. Lee SJ, Lee KW 2007 Protective effect of (-)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells. Biol Pharm Bull 30:1369-1373
9. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK 2002 Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933-34940
10. Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH 2009 The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol Nutr Food Res 53:349-360
11. Lin CL, Lin JK 2008 Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res 52:930-939
12. Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS 2007 Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity (Silver Spring) 15:2571-2582
13. Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, Shimizu M 2000 Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48:5618-5623
14. Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M 2002 Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. J Biol Chem 277:15252-15260
15. Anderson RA, Polansky MM 2002 Tea enhances insulin activity. J Agric Food Chem 50:7182-7186
16. Kao YH, Hiipakka RA, Liao S 2000 Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980-987
17. Yun SY, Kim SP, Song DK 2006 Effects of (-)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. Eur J Pharmacol 541:115-121
18. Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T, Yokogawa K, Moritani S, Miyamoto K 2008 Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol Pharm Bull 31:1403-1409
19. Jung KH, Choi HS, Kim DH, Han MY, Chang UJ, Yim SV, Song BC, Kim CH, Kang SA 2008 Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells. J Med Food 11:429-434
20. Summers SA, Whiteman EL, Birnbaum MJ 2000 Insulin signaling in the adipocyte. Int J Obes Relat Metab Disord 24 Suppl 4:S67-70
21. Saltiel AR, Kahn CR 2001 Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806
22. Cantley LC 2002 The phosphoinositide 3-kinase pathway. Science 296:1655-1657
23. Yamaguchi S, Katahira H, Ozawa S, Nakamichi Y, Tanaka T, Shimoyama T, Takahashi K, Yoshimoto K, Imaizumi MO, Nagamatsu S, Ishida H 2005 Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 289:E643-649
24. Salt IP, Connell JM, Gould GW 2000 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49:1649-1656
25. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA 2001 The hormone resistin links obesity to diabetes. Nature 409:307-312
26. Palanivel R, Maida A, Liu Y, Sweeney G 2006 Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 49:183-190
27. Fan HQ, Gu N, Liu F, Fei L, Pan XQ, Guo M, Chen RH, Guo XR 2007 Prolonged exposure to resistin inhibits glucose uptake in rat skeletal muscles. Acta Pharmacol Sin 28:410-416
28. Rajala MW, Obici S, Scherer PE, Rossetti L 2003 Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest 111:225-230
29. Liu F, Fan HQ, Qiu J, Wang B, Zhang M, Gu N, Zhang CM, Fei L, Pan XQ, Guo M, Chen RH, Guo XR 2008 A paradox: insulin inhibits expression and secretion of resistin which induces insulin resistance. World J Gastroenterol 14:95-100
30. Tachibana H, Koga K, Fujimura Y, Yamada K 2004 A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380-381
31. Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H 2006 The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem Biophys Res Commun 348:524-531
32. Fujimura Y, Yamada K, Tachibana H 2005 A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem Biophys Res Commun 336:674-681
33. Imamura T, Ishibashi K, Dalle S, Ugi S, Olefsky JM 1999 Endothelin-1-induced GLUT4 translocation is mediated via Galpha(q/11) protein and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 274:33691-33695
34. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T 1989 The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86:2863-2867
35. Kozuka M, Ito T, Hirose S, Lodhi KM, Hagiwara H 1991 Purification and characterization of bovine lung endothelin receptor. J Biol Chem 266:16892-16896
36. Ishibashi K, Imamura T, Sharma PM, Ugi S, Olefsky JM 2000 The acute and chronic stimulatory effects of endothelin-1 on glucose transport are mediated by distinct pathways in 3T3-L1 adipocytes. Endocrinology 141:4623-4628
37. Spinella F, Rosano L, Di Castro V, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A 2006 Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol Cancer Ther 5:1483-1492
38. Fong JC, Kao YS, Tsai H, Ho LT 2001 Endothelin-1 increases glucose transporter glut1 mRNA accumulation in 3T3-L1 adipocytes by a mitogen-activated protein kinase-dependent pathway. Cell Signal 13:491-497
39. Kao YS, Fong JC 2008 Endothelin-1 induces glut1 transcription through enhanced interaction between Sp1 and NF-kappaB transcription factors. Cell Signal 20:771-778
40. Chou YC, Perng JC, Juan CC, Jang SY, Kwok CF, Chen WL, Fong JC, Ho LT 1994 Endothelin-1 inhibits insulin-stimulated glucose uptake in isolated rat adipocytes. Biochem Biophys Res Commun 202:688-693
41. Lee YC, Juan CC, Fang VS, Hsu YP, Lin SH, Kwok CF, Ho LT 1998 Evidence that endothelin-1 (ET-1) inhibits insulin-stimulated glucose uptake in rat adipocytes mainly through ETA receptors. Metabolism 47:1468-1471
42. Idris I, Patiag D, Gray S, Donnelly R 2001 Tissue- and time-dependent effects of endothelin-1 on insulin-stimulated glucose uptake. Biochem Pharmacol 62:1705-1708
43. Wu-Wong JR, Berg CE, Wang J, Chiou WJ, Fissel B 1999 Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3-L1 adipocytes. J Biol Chem 274:8103-8110
44. Rachdaoui N, Nagy LE 2003 Endothelin-1-stimulated glucose uptake is desensitized by tumor necrosis factor-alpha in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 285:E545-551
45. Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O 2007 (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: inhibition of p44/p42 MAP kinase activation. FEBS Lett 581:1311-1316
46. Spinella F, Rosano L, Decandia S, Di Castro V, Albini A, Elia G, Natali PG, Bagnato A 2006 Antitumor effect of green tea polyphenol epigallocatechin-3-gallate in ovarian carcinoma cells: evidence for the endothelin-1 as a potential target. Exp Biol Med (Maywood) 231:1123-1127
47. Reiter CE, Kim JA, Quon MJ Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinology 151:103-114
48. Fang Y-H 2009 Defining the mechanisms of FoxO1-mediated inhibition of myogenesis.122
49. Yamamoto N, Sato T, Kawasaki K, Murosaki S, Yamamoto Y 2006 A nonradioisotope, enzymatic assay for 2-deoxyglucose uptake in L6 skeletal muscle cells cultured in a 96-well microplate. Anal Biochem 351:139-145
50. Brown RE, Jarvis KL, Hyland KJ 1989 Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem 180:136-139
51. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH 2009 Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol 297:C121-132
52. Feng WY 2006 Metabolism of green tea catechins: an overview. Curr Drug Metab 7:755-809
53. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA 2005 Activation of SOCS-3 by resistin. Mol Cell Biol 25:1569-1575
54. Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S 1990 Molecular biology of mammalian glucose transporters. Diabetes Care 13:198-208
55. Ishibashi KI, Imamura T, Sharma PM, Huang J, Ugi S, Olefsky JM 2001 Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. J Clin Invest 107:1193-1202
56. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH 2005 Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288:C1094-1108
57. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA 2003 Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108:736-740
58. Zhong Q, Lin CY, Clarke KJ, Kemppainen RJ, Schwartz DD, Judd RL 2002 Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun 296:383-387
59. Liu HS, Chen YH, Hung PF, Kao YH 2006 Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol Endocrinol Metab 290:E273-281
60. Kao YH, Hiipakka RA, Liao S 2000 Modulation of obesity by a green tea catechin. Am J Clin Nutr 72:1232-1234
61. Kao YH, Chang HH, Lee MJ, Chen CL 2006 Tea, obesity, and diabetes. Mol Nutr Food Res 50:188-210
62. Liao S, Kao YH, Hiipakka RA 2001 Green tea: biochemical and biological basis for health benefits. Vitam Horm 62:1-94
63. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ 2005 Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694-699
64. Lin JK, Lin-Shiau SY 2006 Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50:211-217
65. Yang CS, Wang ZY 1993 Tea and cancer. J Natl Cancer Inst 85:1038-1049
66. Lin JK, Liang YC, Lin-Shiau SY 1999 Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol 58:911-915
67. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H 2004 Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci Biotechnol Biochem 68:2353-2359
68. Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N, Milligan SR 2003 Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br J Pharmacol 140:487-499
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2010-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明