博碩士論文 962916019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.133.87.156
姓名 許俊昇(Jyun-Sheng Syu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高功率LED固晶技術之研究
(Study of die bond for high-power LEDs)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,進行三種不同固晶封裝方式,分別對不同製程下之晶片接合表現進行分析,並且利用實驗,發展出具有穩定性與一致性之金錫合金製程技術,配合X-ray分析與推力測試,對於三種不同固晶接合方式,進行機械強度之評比。
接著,提昇熱阻系統量測之穩定性與準確度,並對於不同固晶方式之LED進行熱阻量測分析,區分三種固晶方式之熱阻值優劣,最後,以熱循環測試LED,藉此進行不同固晶方式下,產品之可靠度分析,文末,以上述方式,驗證並討論出對於高功率白光LED最優異之封裝固晶技術。
摘要(英) In this thesis, we study three different kinds of die bonding process and analyze their bonding strength. By experimentation, we develop a eutectic bonding process which is not only stable but also identical. Besides, we implement the LED assembly analysis by x-ray inspection and die shearing test.
Furthermore, we enhance the stabilization and accuracy of the thermal resistance measurement system, also, measure the thermal resistance of these three die bonding process and rank them. Finally, we tested LED reliability by thermal cycle. Through the comparison between the foregoing methods, we get the best die bonding technique for high power white-light LED.
關鍵字(中) ★ 固晶接合
★ 高功率LED
★ 封裝
★ 金錫合金
關鍵字(英) ★ eutectic
★ package
★ LED
★ high-power LED
★ Die bonding
論文目次 目錄
摘要 ......................................................................................................... II
ABSTRACT ........................................................................................... III
致謝 ....................................................................................................... IV
圖索引 ................................................................................................... IX
表索引 .................................................................................................. XV
第一章 緒論
1-1 LED背景 ....................................................................................... 1
1-2研究動機與目的 .......................................................................... 4
1-3論文大綱 ....................................................................................... 6
第二章 常見封裝固晶結構與形式 .................................................. 7
2-1引言 ................................................................................................ 7
2-2 LED固晶技術介紹 ..................................................................... 7
2-3破壞性推力測試法規 ................................................................. 9
2-4銀膠與錫膏固晶材料 ............................................................... 10
2-4-1 銀膠固晶方式 ...................................................................... 12
2-4-2 錫膏固晶方式 ...................................................................... 13
2-5 X-RAY與推力值分析 ............................................................. 15
第三章 金錫合金固晶技術(AU/SN EUTECTIC BONDING) ....... 23
3-1引言 ............................................................................................ 23
3-2金錫合金介紹 .......................................................................... 24
3-3金錫合金製程測試 ................................................................. 27
3-3-1晶片吸取頭結構修正 ........................................................ 34
3-3-2金錫合金製程 .................................................................... 34
3-4金錫合金之X-RAY拍攝與推力值分析 .............................. 36
3-5三種固晶方式之比較 ............................................................ 39
第四章 熱阻量測技術 .................................................................. 48
4-1引言 ......................................................................................... 48
4-2界面溫度(JUNCTION TEMPERATURE)與熱阻量測方式.... 49
4-2-1界面溫度量測方式 .......................................................... 49
4-2-2順向偏壓法與熱阻量測方式 .......................................... 51
4-3驗證系統穩定性與準確度 ................................................... 54
4-4不同固晶方式之熱阻值驗證 ............................................... 55
第五章 LED環境測試 ................................................................... 65
5-1 LED環境測試方法 ................................................................ 65
5-2環境測試實驗架構 ................................................................. 67
5-3不同固晶方式之環測數據分析 .......................................... 68
第六章 結論..................................................................................... 81
參考文獻 ......................................................................................... 82
中英文名詞對照表 ........................................................................ 85
參考文獻 1. N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1-xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
2. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, 1997).
3. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, Dec. 7, (1999).
4. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
5. 孫慶成,LED的效率極限與照明光學設計的極致,2009 LED固態照明研討會,中華民國九十八年。
6. 林明德、戴光佑,“照明光源與LED發展趨勢,”工業材料雜誌 266, 080-081 (2009)。
7. J. Y. Tsao, Eds. Light Emitting Diodes for General Illumination (Washington, DC: Optoelectronics Industry Association, 2002).
8. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
9. A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
10. T. F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating the Same,” United States Patnet, Us 6686676, (2004).
11. Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2, (2004).
12. 李巡天、林志浩, “白光LED用耐UV透明封裝材料技術,” 工業材料雜誌 257, 139-140 (2008)。
13. 鄭景太, “高功率LED熱管理技術與量測,” 工業材料雜誌 256, 180-181 (2008)。
14. E. F. Schubert, Light-Emitting Diodes 2nd ed. (Cambridge University Press, Cambridge, 2006).
15. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
83
16. Alan Mills, “Lighting: the progress & promise of LEDs,” III-Vs Rev. 17, 39-41 (2004).
17. Department of Defense, Test Method Standard-833E. (Defense Supply Center Columbus, 1997).
18. Kelvin Ho, Reflow Profile-Solder Paste with 96.5Sn 3.0Ag 0.5Cu Alloy. (Indium Corporation of America, 2000).
19. CREE, Inc., http://www.cree.com.
20. Philips Lumileds Lighting Company, http://www.philipslumileds.com.
21. Rafael C. Jordan, Jorg Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for Ultra High Brightness LED Package,” Proc. SPIE 6198, 1-4 (2006).
22. H. Baker, ASM Handbook Vol. 3 Alloy Phase Diagrams, ed. (ASM International, 1992).
23. CREE, Inc., EZ700 LED Data Sheet, http://www.cree.com/products/led_docs.asp.
24. B. Huang, J. Chen, Z. Qiao, C. Liu, Y. P. Yao, X. Gao, and B. Bo, “Preparation and Property Study of Gold-Tin Alloys for Packaging of High Power Semiconductor Lasers,” Proc. SPIE 6824, 68241E-4 (2007).
25. N. Narendran, and Y. Gu, “Life of LED-Based White Light Sources,” IEEE/OSA J. Display Technol. 1, 167 (2005).
26. J. Z. Hu, L. Q. Yang, W. J. Hwang, and M. W. Shin, “Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages,” J. Crystal Growth 288, 157 (2006).
27. D. A. Jeannotte, L. S. Goldmann, R. T. Howard, R. R. Tummula, and E. J. Rymaszewski, Eds. Microelectronics Packing Handbook. (Van Nostrand Reinhold, New York, 1989).
28. D. Suhir, “Thermally induced IC package cracking,” IEEE Trans. Comp., Hybrids, Manufact. Technol. 13, 940–945 (1990).
29. B. S. Siegal, “Measuring Thermal Resistance Is the Key to a Cool Semiconductor,” Electronics 51, 121-126 (1978).
30. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Optics Express 15, 6670-6671 (2007).
31. Siegfried Luger, “Thermal Management White LED Challenges LED lighting Control System,” LED professional Magazine 04, 15-17 (2007).
32. S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” Appl. Phys. 58, 1124-1128 (1985).
33. H. I. Abdelkader, H. H. Hausien, and J. D. Martin, “Temperature rise and thermal
84
rise-time measurements of a semiconductor laser diode,” Rev. Sci. Instrum. 63 2004-2007 (1992).
34. S. Murata and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50μm spaced 8-beam laser diode array.” Appl. Phys. 72, 2514-2516 (1992).
35. P. W. Epperlein and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett. 61, 3074-3076 (1993).
36. D. C. Hall, L. Goldberg, and D. Mehuys, “Technlque for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett. 61, 384-386 (1992).
37. Y. Gu and N. Narendran, “A Non-contact Method for Determining Junction Temperature of Phosphor-Converted White LEDs,” Proc. SPIE 5187, 107-114 (2004).
38. P. W. Epperlein, in Proceedings of 17th International Symposium of Gallium Arsenide and Related Compounds, IOP Conference Series, 112, 633 (IOP, London, 1990).
39. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
40. H. Y. Chou and T. H. Yang, “Dependence of Emission Spectra of LEDs upon Junction Temperature and Driving current,” J. Light & Vis. Env. 32, 134-136 (2008).
41. JEDEC Standard, Integrated Circuit Thermal Test Method Environmental Conditions-Natural Convection (Still Air) JESD51-2A, (cELECTRONIC INDUSTRIES ALLIANCE, 1995).
42. Department of Defense, Test Method Standard Electronic and Electrical Component Parts-202G. (Defense Supply Center Columbus, 1997).
43. JEDEC Standard, Steady State Temperature Humidity Bias Life Test A101-B, (cELECTRONIC INDUSTRIES ALLIANCE, 1997).
44. Jeffrey Singer, Scott Mangum, and John Lundberg, “Testing high brightness LEDs relative to application environment,” Proc. SPIE 6337, 63371C-1-63371C-8 (2006).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2009-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明