博碩士論文 92542018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.144.94.134
姓名 黃玉成(Yu-chen Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 無線多媒體服務之延遲間距測量傳輸策略
(Jitter-Based Measurement Transport Strategy for Wireless Multimedia Service)
相關論文
★ 具多重樹狀結構之可靠性群播傳輸★ 在嵌入式行動裝置上設計與開發跨平台Widget
★ 在 ARM 架構之嵌入式系統上實作輕量化的手持多媒體播放裝置圖形使用者介面函式庫★ 基於網路行動裝置所設計可擴展的服務品質感知GStreamer模組
★ 針對行動網路裝置開發可擴展且跨平台之GSM/HSDPA引擎★ 於單晶片多媒體裝置進行有效率之多格式解碼管理
★ IMS客戶端設計與即時通訊模組研發:個人資訊交換模組與即時訊息模組實作★ 在可攜式多媒體裝置上實作人性化的嵌入式小螢幕網頁瀏覽器
★ 以IMS為基礎之及時語音影像通話引擎的實作:使用開放原始碼程式庫★ 電子書嵌入式開發: 客制化下載服務實作, 資料儲存管理設計
★ 於數位機上盒實現有效率訊框參照處理與多媒體詮釋資料感知的播放器設計★ 具數位安全性的電子書開發:有效率的更新模組與資料庫實作
★ 適用於異質無線寬頻系統的新世代IMS客戶端軟體研發★ 在可攜式數位機上盒上設計並實作重配置的圖形使用者介面
★ Friendly GUI design and possibility support for E-book Reader based Android client★ Effective GUI Design and Memory Usage Management for Android-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 壅塞控制技術一直是網路相關研究的重要議題,尤其在網路的視訊串流的研究上,隨著網路的普及以及使用費用的日趨平價,網路服務已不再局限於大公司、公家機關或是大專院校,更進一步深入家庭。也因此各種基於一般消費者的網路服務接踵推出。而最受矚目的不外是多媒體影音服務。且網路的先天架構較傳統廣播媒體更能夠無遠弗屆的服務使用者,並將使用的費用及限制降至最低。
為了將多媒體服務藉由現在的網路環境播送到家戶,目前所最常用網路通訊協定不得不做進一步的改善,而其重者尤以改善傳輸層的通訊協定。目前網路傳輸層通訊協定是以服務資料傳送為主,旨在保證資料傳輸的正確完整。但相較於資料傳輸,多媒體傳輸更強調即時性。藉由新穎的影音壓縮技術,多媒體傳輸可以容忍少量的封包遺失,但對於影音資料接收的平穩需求卻更為急迫,而影響傳輸平穩的重要因素之一就是所取得的傳送頻寬,以視訊串流為例,當頻寬不足時延遲的封包被丟棄,丟棄的封包除了浪費頻寬更會進一步延遲隨後送出的封包。而針對傳輸平穩的需求,學者們提出目前所最廣泛使用的流量壅塞控制技術TFRC。
TFRC除了平順的傳輸外最大特色便是具有TCP Friendly,TCP Friendly 的特色即是在與傳統資料傳輸協定,如TCP傳輸協定競爭頻寬時並不會產生不公平競爭的現象,也就是當一個TCP與TFRC連線在競爭頻寬時,TFRC會保持著與TCP連線相近的傳輸速率,而不會持續增加傳輸速度而壓迫其他的TCP連線,這種特性是基於TFRC能藉由偵測封包遺失而持續感知網路壅塞,進一步去推估,若存在一個TCP連線與本身競爭相同瓶頸頻寬時,調整本身的傳輸速度同於該被推估的TCP連線之平均傳送速度。但此特性相對也抑制TFRC的傳輸效能,也就是說當利用TFRC傳送多媒體串流服務,TCP Friendly的特性使得傳輸多媒體串流與一般的TCP資料連線競爭頻寬時過於保守,忽略的資料傳輸與多媒體傳輸先天需求的差異卻齊頭式平等,使得透過TFRC傳輸的多媒體串流效能無端減弱。這種問題在無線網路多媒體傳輸更為嚴重。
在無線網路的環境下的封包遺失,除了來自網路壅塞之外更會因為不良的無線網路訊號而導致封包遺失。此時傳統通訊協定,如TCP、TFRC等,會因為壅塞控制的誤判導致傳輸效能嚴重下降。這種現象除了弱化多媒體傳輸品質外更嚴重浪費頻寬。隨著無線網路的普及、傳輸速率的大幅度進展以及使用費用的降低,各種無線網路營運供應商如雨後春筍般出現,為了吸引使用者增加其收益,莫不以提供無線多媒體服務為其主要訴求。而妥善運用其網路資源成為網路營運商首重考量之一。但是TFRC的保守性與無線網路而造成的效能低落成為無線網路營運上的需要立即克服的重要問題。
為了解決網路壅塞造成的傳輸效能低落,學者提出可用頻寬估測的概念。以現今網路而言所有傳輸資料的長期來看是穩定的,也因此觀測傳輸路徑中瓶頸頻寬的變化足以顯示該傳輸路徑網路壅塞的變化。基於這個觀察我們提出了JitterPath這個可用頻寬估測的方法,相較於其他具代表性的可用頻寬估測方法而言,JitterPath具有端對端、快速且準確的特性。也因此不需要網路節點配合即可準確估測網路可用頻寬。
可用頻寬的概念,除了做為網路測量工具之外,更可以用在提升通訊協定的效率之上。基於JitterPath的基礎,我們提出新傳輸層通訊協定,包含可以提升傳統TCP通訊協於無線網路下的效能的EJTCP以及針對多媒體及無線網路傳輸特性所提出改良TFRC通訊協定的OWDJ-TFRC,為完整的通訊層協定的無線網路多媒體解決方案。
摘要(英) TCP is the most important and widely used transport protocol at present. With the advent of advanced wireless broadband technologies, TCP must be tuned and enhanced from traditional networks made up of purely wired links to wired-cum-wireless networks. As a result of high bit error rate (BER) in wireless links, TCP halves down its congestion window unnecessarily caused by random packet loss event continuously, and the performance is significantly degraded in wireless networks. The problem about differentiating congestion loss and random loss has been investigated recently by a number of schemes. Wireless TCP solutions, such as JTCP (jitter-based TCP) improve TCP performance for wireless networks. However, even if the enhanced solutions make efforts to distinguish packet losses,
some unavoidable events may occur to make TCP timeout frequently. Hence, we amend JTCP scheme to design a smooth transmission scheme to increase the correctness of loss distinction and avoid bursty transmission.
To have better transport performance, we design enhanced JTCP to provide better performance in sending data traffic under wire-cum-wireless environment. However, JTCP only have good performance in data traffic but multimedia traffic. For example, video streaming. Rate-based congestion control is an important issue for advanced video streaming. The widely adopted rate based congestion control scheme is TFRC. According to TCP-friendly rate estimation mechanism, TFRC can provide smooth perceptual quality in video streaming. However, video streaming needs not only smooth rate control but also higher priority in competing network bandwidth. Compare to data traffic, video streaming has minimum bandwidth requirement issue, however, data traffic only cares about integrity. If video streaming can not acquire network bandwidth in time, outdated video streaming packets will be dropped and network bandwidth wasted. In a word, TFRC is too conservative while it transmits video streaming service.
Measurement of end-to-end available bandwidth has received considerable attention due to its potential use in improving QoS. Available bandwidth enables the sending rate to adapt to network conditions, so that packet loss, caused by congestion, can be significantly reduced before error control mechanisms are finally employed. To this end, we propose a probing noise resilient available bandwidth estimation scheme, called JitterPath, which is adaptive to both the fluid and bursty traffic models. Two key factors, one-way delay jitter and accumulated queuing delay, are both
exploited to predict the type of queuing region for each packet pair. Then, the bottleneck utilization information included in the joint queuing regions is estimated and used to quantify the captured traffic ratio, which indicates the relationship between the probing rate and available bandwidth. The contributions of our method are as follows: (1) JitterPath can work without being restricted to fluid traffic models; (2) since JitterPath does not directly use the bottleneck link capacity to calculate the available bandwidth, it is feasible for use in a multi-hop environment with a single
bottleneck; (3) JitterPath inherently reduces the impact of probing noises under the bursty cross traffic model. Extensive simulations, Internet experiments, and comparisons with other methods were conducted to verify the effectiveness of our method under both single-hop and multi-hop environments. Before deeply discuss available bandwidth, we need to understand the major traffic in the Internet and the problem while it applied in wireless environment.
Beside issue of conservation, TFRC will malfunction in wireless environment if packet lost events were introduced by wireless channel loss but network congestion. Some State-of-arts try to utilize delay measurement to distinguish channel loss from observed packet loss events. However, these approaches do not take care the measurement noise came from background traffics. The bursty nature of background traffic breaks relationship between the delay measurement and congestion. To solve this issue, we proposed a new one-way delay jitter based method, OWDJ-TFRC, to achieve above two goals in wired-cum-wireless network. Simulation results also show that our method conducts performance improvement without intrusiveness issue under bursty background traffic in wire-cum-wireless network.
關鍵字(中) ★ 網路壅塞
★ 可用頻寬估測
★ 無線網路
★ 網路視訊
關鍵字(英) ★ available bandwidth estimation
★ video stream
★ wireless
★ netowrk congestion
論文目次 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Available Bandwidth Estimation . . . . . . . . . . . . . . . . . . . . . . 3
1.3 TCP over wireless network . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 TCP-friendly aware QoS . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 The Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 6
2 End-to-End Available Bandwidth Measurement 8
2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Overview of Active Measurement Techniques . . . . . . . . . . . 10
2.1.3 Probe Rate Model (PRM)-based Methods . . . . . . . . . . . . . 11
2.1.4 Probe Gate Model (PGM)-based Methods . . . . . . . . . . . . . 13
2.1.5 Problem Description and Our Solution . . . . . . . . . . . . . . . 15
2.2 The Proposed Method, JitterPath, Based on the Fluid Traffic Model . . . 18
2.2.1 Queuing Delay Propagation Model (QDPM)-based Queuing Region
Determination . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Queuing Region Determination . . . . . . . . . . . . . . . . . . 19
2.2.3 Queuing Delay Propagation . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Determining the Initial Queuing Delay . . . . . . . . . . . . . . . 22
2.2.5 Captured Traffic Ratio under the Fluid Model . . . . . . . . . . . 23
2.2.6 Probing Rate Adjustment . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 The Proposed Method, JitterPath, Under the Bursty Traffic Model 26
2.2.8 Eliminating Probing Noise . . . . . . . . . . . . . . . . . . . . . 27
2.2.9 The Captured Traffic Ratio(CTR) under Bursty Cross Traffic . . . 29
2.2.10 Probing Rate Adjustment in the Ambiguous Region . . . . . . . . 30
3 Wireless TCP 31
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 End-to-end approach . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 TCP-Westwood . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 TCP Vegas and TCP Veno . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 JTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Enhanced JTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 JTCP error judgement . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Bursted transmit and smooth transmit scheme . . . . . . . . . . . 40
3.4 Enhanced JTCP Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 TCP-friendly QoS for Multimedia Transport Protocol 47
4.1 Overview of The Flow Control Framework of Wireless TCP Model . . . . 47
4.2 TCP and TFRC over Wireless . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Related Works on TCP/TFRC over Wire-cum-Wireless . . . . . . . . . . 51
4.3.1 Snoop and ELN . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 ZBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 MULTFRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Proposed Method OWDJ-TFRC . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Congestion Prevention before Packet Dropping . . . . . . . . . . 55
4.4.2 Congestion Detection when Packet Loss Detected . . . . . . . . . 57
4.4.3 The Relationship between the Non-Captured Traffic Ratio and
Additional Probing Rate . . . . . . . . . . . . . . . . . . . . . . 59
5 Simulation and Experiments 63
5.1 JitterPath: NS2 Simulations and Experiments under Planetlab . . . . . . . 63
5.1.1 Single-Hop Network Environment . . . . . . . . . . . . . . . . . 64
5.1.2 Multi-hop Network Environment . . . . . . . . . . . . . . . . . . 69
5.1.2.1 One-Hop Persistent . . . . . . . . . . . . . . . . . . . 69
5.1.2.2 Path Persistent . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Measurement Accuracy vs. Packet Train Length . . . . . . . . . 73
5.1.4 Real-Network Environment . . . . . . . . . . . . . . . . . . . . 74
5.2 Enhanced JTCP: NS2 Simulations . . . . . . . . . . . . . . . . . . . . . 78
5.2.1 Throughput Enhancement . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Single-hop and Multi-hop topology . . . . . . . . . . . . . . . . 81
5.2.4 Enhancement JTCP+ . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 OWDJ-TFRC: NS2 Simulations . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Path Persistent Topology . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 One-hop Persistent Topology . . . . . . . . . . . . . . . . . . . . 88
5.3.3 OWDJ-TFRC Friendliness . . . . . . . . . . . . . . . . . . . . . 89
5.3.4 Intra-fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.5 Inter-fairness and TCP-friendliness . . . . . . . . . . . . . . . . 90
6 Conclusion and FutureWork 100
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Bibliography 105
參考文獻 [1] M. Allman, V. Paxson and W. Stevens, ”TCP Congestion Control,” RFC 2581, April. 1999.
[2] H. Balakrishnan,V.Padmanabhan,S. Seshan,andR. Katz,“Acomparisonof mech¬anisms for improving tcp performance over wireless links,” IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 756-769, 1997.
[3]L. BrakmoandL. Peterson,”TCPVegas:EndtoEnd CongestionAvoidanceona Global Internet”, IEEE JSAC,Vol. 13, No. 8, pp. 1465-1480, Oct. 1995.
[4] K.Takagaki,H. Ohsaki andM. Murata, ”AnalysisofaWindow-based Flow Con¬trol Mechanism Based on TCPVegas in Heterogeneous Network Environment”, IEEE International Conference on Communications, June. 2001.
[5] H. Balakrishnan and R. Katz,“Explicit loss notification and wireless web perfor¬mance,” in Proc. of IEEE Globecom Internet Mini-Conference, Nov. 1998.
[6]S.BiazandN.H.Vaidya, “De-randomizing congestion lossestoimproveTCPper¬formanceover wired-wireless networks,” IEEE/ACMTransactions on Networking, Vol. 13 , No. 3, pp. 596 -608, June 2005.
[7] D. Barman and I. Matta,“Effectiveness of loss labeling in improving tcp perfor¬mance in wired/wireless networks,” in Proc. of the 10th ICNP,Washington, DC, USA, 2002, pp. 2-11.
[8]T.Bu,N.Duffield,F.L. Presti,andD.Towsley,“Network tomography on general topologies,” In Proceedings of the 2002 ACM SIGMETRICS international con¬ference on Measurement and modeling of computer systems, pages 21-30.ACM Press, 2002
[9] A. Capone, L. Fratta andF. Martignon, ”Bandwidth Estimation Schemes for TCP overWireless Networks”, IEEETransactions on Mobile Computing ,Vol. 3, No. 2, pp. 129-143, Apr.-Jun. 2004.
[10] R. Carter and M. Crovella,“Measuring bottleneck link speed in packet-switched net-works,” Technical report, Boston University Computer Science Department, March 1996.
[11] S. Cen,P. C. Cosman and G. M.Voelker, “End-to-end differentiation of conges¬tion and wireless losses,” IEEE/ACMTransactions on Networking, Vol.11 No.5, pp.703-717, October 2003.
[12] M. Chen and A. Zakhor, “Multiple TFRC Connections Based Rate Control for Wireless Networks,” IEEETransactions on Multimedia, Vol. 8, No. 5, pp. 1045¬1062, October. 2006.
[13] M. Chen and A. Zakhor, “Rate control for streaming video over wireless,” in Proc. IEEE INFOCOM, Hongkong, China, Mar. 2004.
[14]P.F. ChengandC.L. Soung, ”TCPVeno: TCP EnhancementforTransmission overWireless Access Networks”, IEEE JSAC,Vol. 21, No. 2, pp. 216-228, Feb. 2003.
[15] S.Y. Chen, E. H-K.Wu, and M. Z. Chen, ”A New Approach UsingTime-Base Model for TCP-Friendly Rate Estimation”, IEEE International Conference on Communications, May. 2003.
[16] M. Claypool, R. Kinicki, M. Li, J. Nichols, and H.Wu.“Inferring queue sizes in access networks by active measurement,” In Proc.PAM, April 2004.
[17]F. Dabek,R. Cox,F. Kaashoek, andR. Morris,“Vivaldi: a decentralized network coordinate system,” InProc.ACM SIGCOMM, August 2004.
[18] W. Ding and J. A,“A new explicit loss notification with acknowledgment for wire¬less tcp,” in Proc. of 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ, USA, 2001, pp. B-65-9
[19] C. Dovrolis, P. Ramanathan, and D. Moore,“What Do Packet Dispersion Tech¬niques Measure?” Proc. Int. Conf. Computer Communication, pp. 905-914, Apr. 2001.
[20] D. Dutta, Y. Zhang, “An Early Bandwidth Notification (EBN) Architecture for Dynamic Bandwidth Environment,” Proc. IEEE Int. Conf. on Communications, 2002.
[21] S. Floyd and K.Fall, “Promoting the use of end-to-end congestion control in the internet,” IEEE/ACM Transactions on Networking, Vol. 7, No. 4, pp. 458 –472, August. 1999.
[22] M. Gerla,M.Y. Sanadidi,R.Wang,A. Zanella,C. Casetti,S. Mascolo, ”TCPWest¬wood: CongestionWindow Control Using Bandwidth Estimation”, IEEE Globe¬com, Vol.3,pp 1698-1702, San Antonio,Texas, USA,November 25-29, 2001.
[23] N.Hu andP. Steenkiste, “Evaluation and CharacterizationofAvailable Bandwidth Techniques,” IEEE Journal on Selected Areas in Communication: Special Issue in Internet and WWW Measurement, Mapping, and Modeling,Vol. 21, No. 6, pp. 879-894, 2003.
[24] N.Hu andP. Steenkiste, “Improving TCP Startup Performance using Active Mea¬surements: Algorithm and Evaluation,” Proc. of the 11th IEEE Int. Conf. on Net¬work Protocols, pp. 107-118, November 2003.
[25]N.Hu,L.Li,Z.M.Mao,P. SteenkisteandJ.Wang, “A MeasurementStudyof Internet Bottlenecks,” Proc. of the 24th IEEE Infocom, pp. 41-54, March 2005.
[26]N.Hu,L.Li,Z.M.Mao,P. SteenkisteandJ.Wang, “Locating Internet Bottle¬necks: Algorithms, Measurements, and Implications,” Proc.ACM SIGCOMM In¬ternet Measurement Conference, October 2004.
[27]Y.C. Huang,C.S.Lu, andH.K.Wu, “ReliableAvailable Bandwidth Estimation Basedon Distinguishing QueuingRegionsand ResolvingFalse Estimations,” Proc. IEEE Global Telecommunications Conference (Globecom), Dallas Texas, USA, 2004.
[28]Y.C.Huang,C.S.Lu,andH.K.Wu,“Available Bandwidth EstimationviaOne-Way Delay Jitter and Queuing Delay Propagation Model,” Proc. IEEE Wireless Communication and Networking Conference, LasVegas, USA, 2006.
[29]Y.C. Huang,C.S.Lu, andH.K.Wu,“JitterPath: Probing Noise Resilient One-Way Delay Jitter-basedAvailable Bandwidth Estimation,” IEEETransactions on Multimedia, volume 9, number 4, pages 798-812, June 2007.
[30] C. JA and A. P.,“Congestion or corruption? a strategy for efficient wireless tcp sessions,” in Proc. of IEEE Symposium on Computers and Communications, Los Alamitos, CA, USA, 1995, pp. 262-268
[31]V. Jacobson, “Congestionavoidanceand control,”in Proc.ACM SIGCOMM, Stan¬ford, CA, Aug. 1988, pp. 314-329.
[32] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Measurement Methodology, Dynamic, and Relation with TCP Throughput,” Proc. ACM SIG¬COMM, pp. 295-308, 2002.
[33]M.JainandC.Dovrolis,“Pathload:AMeasurementToolfor End-to-EndAvailable Bandwidth,” Proc.Passive and Active Measurements, 2002.
[34]M.JainandC.Dovrolis,“TenFallaciesandPitfallson End-to-EndAvailableband¬width Estimation,” Proc. Internet measurement conf., pp. 272-277, October 2004.
[35] R. Jain, “The art of computer systems performance analysis,”Wiley, NewYork, QA76.9.E94J32, 1991.
[36] R. Johari and D.Tan, “End-to-end congestion control for the internet: delays and stability,” IEEE/ACM Transaction on Network., vol. 9, no. 6, pp. 818-832, Dec. 2001.
[37]F.P.Kelly,A. Maulloo, andD.Tan, “Rate control for communication networks: shadow prices, proportionalfairness, and stability,” Journal of the Operationl Re¬searchSociety, vol. 49, pp. 237-252, 1998.
[38]F.P.Kelly,“Fairness and stabilityof end-to-end congestion control, ” European Journal of Control, vol. 9, pp. 159-176, 2003.
[39] S. Keshav, “A Control-Theoretic Approach to Flow Control,” Proc. ACM SIG¬COMM, pp. 3-15, 1991.
[40]T.eunKim,S.Lu,andV.Bharghavan,“Improving congestion control performance through loss differentiation,” inProc. ICPPWorkshop, 1999, pp. 140-145.
[41] S. Kunniyur and R. Srikant, “A time scale decomposition approach to adaptive ECN marking,” IEEE Trans. Autom. Control, vol. 47, no. 6, pp. 882-894, Jun. 2002.
[42] K. Lai and M. Baker, “Nettimer: A Tool for Measuring Bottleneck Link Band¬width,” Proc. USENIX Symp. InternetTechnologies and Systems,pp. 123-134, Mar. 2001.
[43] Z.G. Li, C. Zhu, N. Ling, X. K.Yang, G.N. Feng, S.Wu, andF.Pan, “AUnified Architecture for Real-TimeVideo-Coding Systems,” IEEETrans. on Circuits and Systems forVideoTechnology,Vol. 13, No. 6, pp. 472-487, 2003.
[44]J.Liu,B.Li,andY.Q.Zhang,“AdaptiveVideo Multicastoverthe Internet,” IEEE Multimedia,Vol. 10, No. 1, pp. 22-31, 2003.
[45] Q. Liu, and J. Hwang, “End-to-End Available Bandwidth Estimation and Time Measurement Adjustment for Multimedia QoS,” Proc. IEEE Int. Conf. on Multi¬media and Expo, 2003.
[46] X.Liu,K.Ravindran,B.Liu,andD. Loguinov,“Single-Hop AsymptoticsinAvail¬able Bandwidth Estimation: Sample-Path Analysis,” Proc.ACM SIGCOMM Inter¬net Measurement Conf., pp. 300-313, October. 2004.
[47] J. Mahdavi and S. Floyd (1997, Jan.),“TCP-Friendly unicast rate-based flow con¬trol,” Technical note sent to end2end-interest mailing list. [Online]. Available: http://www.psc.edu/networking/papers/tcp friendly.html
[48] R. Mahajan, N. Spring, D.Wetherall, andT. Anderson. “User-level internet path diagnosis.” In Proc. SOSP, October 2003.
[49] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi , R. Wang, “TCP westwood: Bandwidth estimation for enhanced transport over wireless links,” Proceedings of the 7th annual international conference on Mobile computing and networking, pp. 287-297, July 2001, Rome, Italy.
[50] Matthew Mathis and Jamshid Mahdavi,“Diagnosing internet congestion with a transport layer performance tool,” In Proc. INET’96, Montreal, Canada,June 1996.
[51] B. Melander,M. Bjorkman, andP. Gunningberg, “ANew End-to-End Probing and Analysis Method for Estimating Bandwidth Bottlenecks,” Proc. Global Internet Symposium, pp. 415-420, 2000.
[52] J. Mo and J. Walrand,“Fair end-to-end window-based congestion control,” IEEE/ACMTransaction on Network, vol. 8, no. 5, pp. 556-567, Oct. 2001.
[53] J. Navratil, and R. L. Cottrell, “ABwE:APractical Approach toAvailable Band¬width Estimation,” Proc.Passive and Active MeasurementWorkshop, 2003.
[54] T. S. E. Ng and H. Zhang,“Predicting Internet network distance with coordinates-based approaches,” In Proc. IEEE INFOCOM, June 2002.
[55] ns2 [Online]. http://www.isi.edu/nsnam/ns.
[56] T. Oetiker and D. Rand. Multi Router Traffic Grapher. http://people.ee.ethz.ch/ oetiker/webtools/mrtg/.
[57] N.Parvez and E. Hossain, ”Improving TCP Performance inWired-Wireless Net¬works By Using a Novel Adaptive Bandwidth Estimation Mechanism,” IEEE Globecom, 2004.
[58]J.Padhye,V. Firoin,D.Towsley,andJ.Kurose, “ModelingTCP throughput: A simple model and its empirical validation,” In SIGCOMM 1998, pp. 303–314.
[59] A. Pasztor and D. Veitch,“Active probing using packet quartets,” In ACM SIG¬COMM Internet MeasurementWorkshop 2002, 2002.
[60] V. Paxson, “End-to-end Routing Behavior in the Internet,” IEEE/ACM Transac¬tions on Networking,Vol. 5, No. 5, pp. 601-615, 1997.
[61] PlanetLab, http://www.planet-lab.org/.
[62]R.Puri,K.W.Lee,andK. Ramchandran, “AnIntegrated SourceTranscodingand Congestion ControlParadigmforVideo Streaminginthe Internet,” IEEETrans. on Multimedia,Vol. 3, No. 1, pp. 18-32, 2001.
[63] J. Rendon, F. Casadevall, and J. Carrasco, “Wireless tcp proposals with proxy servers in the gprs network,” in Proc. of 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ, USA, 2002, pp. 1156-1160
[64] V. Ribeiro,“Spatio-temporal available bandwidth estimation for high-speed net¬works,” In Proc. of theFirst Bandwidth EstimationWorkshop (BEst), December 2003.
[65] V. J. Ribeiro, M. Coates, R. H. Riedi, S. Sarvotham, and R. G. Baraniuk, “Multi¬fractal CrossTraffic Estimation,” Proc. ITC specialist seminar on IP traffic Mea¬surement, 2000.
[66] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell, “PathChirp: EfficientAvailable Bandwidth Estimation for NetworkPaths,” Proc.Passive and Active MeasurementWorkshop, 2003.
[67]V.J. Ribeiro,R.H. RiediandR.G. Baraniuk, “LocatingAvailable BandwidthBot¬tlenecks,” Second Int.Workshop on Protocols forFast Long-Distance Networks, October 2004.
[68] J.W. Roberts,“Traffic Theoryandthe Internet,” IEEE Communications Magazine, No.1,Vol. 39, 2001.
[69] S. Savage,“Sting: a TCP-based network measurement tool,” In Proc. of the 1999 USENIX Symposium on InternetTechnologies and Systems, October 1999.
[70]H. Schulzrinne,S. Casner,R. Frederick,andV. Jacobson,”RTP:ATransportPro¬tocol for Real-Time Application”, RFC 1889, Jan. 1996.
[71] J. Sommers,P. Barford, N. Duffield, and A. Ron, “Improving accuracyin end-to¬end packet loss measurement,” InACM SIGCOMM, August 2005.
[72] J. Strauss,D. Katabi, andF. Kaashoek, “AMeasurement StudyofAvailable Band¬width EstimationTools,” Proc. Internet measurementWorkshop, pp. 27-29, Octo¬ber 2003.
[73]Y.Tian,K.Xu,andN. Ansari,”TCPinWirelessEnvironments: ProblemsandSo¬lutions,” IEEE Radio Communications,Vol. 43, No. 3, pp. S27-S32, March 2005.
[74] A. Tirumala and J. Ferguson. Iperf. [Online]. Available: http://dast.nlanr.net/Projects/Iperf
[75] Ttcp. http://ftp.arl.mil/ mike/ttcp.html.
[76] S.VangalaandM.A. Labrador, ”PerformanceofTCPover wireless networks with the Snoop Protocol,” Proceedings of 27th IEEE LCN,Tampa, November 2002
[77] D.Wu,Y.T. Hou, andY.Q. Zhang,“Transport Real-TimeVideoover the Internet: Challenges and Approaches,” Proceedings of the IEEE,Vol. 88, No. 12, pp. 1855¬1875, 2000.
[78] E. H.-K.Wu andM.Z. Chen, “JTCP: Jitter-based TCP for heterogeneous wireless networks,” IEEE JSAC,Vol. 22, No. 4, pp. 757-766, MAY2004.
[79] G. Xylomenos, G. C. Polyzos,P. Mahonen and M. Saaranen, ”TCP Performance IssuesoverWireless Links,” IEEE Communications, 39(4):52-59, April 2001.
[80] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for Wireless IP Communications,” IEEE JSAC,Vol. 22, No. 4, pp. 747-756, May 2004.
[81]Y.Yang,H. Zhang,andK.R., “Channel quality based adaptationoftcp with loss discrimination,” inProc.of IEEE GlobalTelecommunications Conference, Piscat¬away, NJ, USA, 2001, pp. 2026-2030.
[82] N. B.Yoma, J. Hood, and C. Busso, “AReal-Time Protocol for the Internet based on the Least Mean Square Algorithm,” IEEETrans. on Multimedia,Vol. 6, No. 1, pp. 174-184, 2004.
[83]Y. Zhang,N. Duffield,V.Paxson, andS. Shenker, “On the Constancyof Internet Path Properties,” Proc. ACM SIGCOMM Internet Measurement Workshop, Nov. 2001.
指導教授 吳曉光(Hsiao-Kuang Wu) 審核日期 2010-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明