博碩士論文 955302023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.119.163.95
姓名 李經寧(Ching-Ning Lee)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 即時手勢辨識系統應用於機上盒控制
(A Real Time Hand Gesture Recognition System for Set-top Box Control)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 基於檢驗數值的糖尿病腎病變預測模型
★ 模糊類神經網路為架構之遙測影像分類器設計★ 複合式群聚演算法
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 手勢辨識(Gesture Recognition)是目前熱門研究的主題,應用的範圍非常廣,包括機器人操控,遊戲,或是家電的控制等,本論文目的在設計一個操作機上盒的人機介面,以一台攝影機即時擷取手勢影像,來達成即時手勢辨識目的,系統主要以CamShift方法動態追蹤手部並透過數位影像處理中的背景相減、形態學的運算及邊界偵測取出手部輪廓影像,而後依照手指指尖特徵找出手指並計算手指與手掌重心的角度,利用手指的數目與角度關係來判斷手勢指令,最後再透過紅外線發射裝置將指令送至機上盒。
結果驗證部份,我們定義八種手勢,分別由七位測試者針對五種狀況測試,整體平均辨識率為94.1%。
摘要(英) Gesture recognition is a popular research topic at present, its application is broad which includes robot operation, controller for video games or other household appliances and etc. The purpose of this paper is to design a Human-Machine interface by using a video camera to capture live hand gesture to achieve the goal of hand gesture recognition. This system will track the hand movement using background subtraction, morphology and CamShift algorithm to extract the hand contour. After the hand contour is obtained, the system will then identify each finger according to its unique feature and calculate the angle between fingers and mass centre of palm, using the number of fingers and its angles to determine the command given by the gesture. Finally, the command will be passed to STB through an infrared transmitter.
For result verification we have defined 8 types of hand gesture, the experiment is conducted with 7 participants aiming at 5 scenarios. The average recognition rate is 94.1%.
關鍵字(中) ★ 手勢控制
★ 機上盒
關鍵字(英) ★ Gesture Control
★ STB
論文目次 摘要..................................................I
Abstract.............................................II
誌謝................................................III
目錄.................................................IV
圖目錄..............................................VII
表目錄...............................................XI
一、緒論..............................................1
1-1 研究動機..........................................1
1-2 研究目的..........................................1
1-3 論文架構..........................................2
1-4 相關文獻..........................................3
二、影像前處理.......................................10
2-1 色彩模型.........................................10
2-2 背景相減.........................................12
2-3 形態學...........................................13
2-3-1 侵蝕...........................................13
2-3-2 擴張 ..........................................13
2-3-3 斷開 ..........................................14
2-3-4 閉合...........................................14
2-4 標記演算法.......................................16
2-5 邊界搜尋法.......................................16
2-6 CamShift演算法...................................18
三、辨識方法及步驟...................................23
3-1 系統簡介.........................................23
3-1-1 開發環境.......................................23
3-1-2 機上盒規格.....................................23
3-2 手勢定義.........................................25
3-3 系統流程.........................................26
3-4 影像擷取.........................................28
3-5 手部擷取.........................................28
3-6 手指搜尋.........................................33
四、實驗與結果.......................................35
4-1 手指定位.........................................35
4-2 手勢判定規則.....................................37
4-3 手勢辨識實驗.....................................39
4-4 實驗結果分析.....................................48
4-5 機上盒操作實驗...................................49
五、結論與未來展望...................................53
5-1 結論.............................................53
5-2 未來展望.........................................53
參考文獻.............................................55
參考文獻 [1] M. A. Amin and H. Yan, “Sign Language Finger Alphabet Recognition From Gabor-PCA Representation of Hand Gestures,” Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, pp.2218-2223, 2007
[2] 黃仲寧,「台灣手語手型辨識研究」,成功大學資訊工程研究所,碩士論文,民國九十四年六月。
[3] W. T. Freeman and C. D. Weissman, “Television Control by Hand Gestures,” in IEEE Intl. Wkshp. on Automatic Face and Gesture Recognition, 1995.
[4] 黃俊傑,「互動雙足式機器人之設計與實現(I)」,中央大學電機工程研究所,碩士論文,民國九十七年六月。
[5] 趙于翔,「可攜式台灣手語發聲系統」,淡江大學電機工程研究所,碩士論文,民國九十一年五月。
[6] 洪兆欣,「以軌跡辨識為基礎之手勢辨識系統」,中央大學資訊工程研究所,碩士論文,民國九十五年七月。
[7] J. P. Wachs, H. Stern, and Y. Edan, “Cluster labeling and parameter estimation for the automated setup of a hand-gesture recognition system,” IEEE Trans. on Systems, Man, and Cybernetics, Part A, vol. 35, pp. 932-944, Nov. 2005
[8] W. Du and H. Li, “Vision based gesture recognition system with single camera,” Proc. of ICSP2000, vol.2, pp1351-1357, 2000
[9] R. Cutler and M. Turk, “View-based Interpretation of Real-time Optical Flow for Gesture Recognition,” in IEEE Conf. on Face and Gesture Recognition, 1998.
[10] Y. Liu, Z. Gan, and Y. Sun, “Static Hand Gesture Recognition and Its Application based on Support Vector Machines,” in ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp.517-521, 2008.
[11] R. Yang and S. Sarkar, “Gesture Recognition Using Hidden Markov Models from Fragmented Observations, ” Porc. IEEE Conf. Computer Vision and Pattern Recognition, 2006
[12] M. Vafadar and A. Behrad, “Human Hand Gesture Recognition Using Motion Orientation Histogram for Interaction of Handicapped Persons with Computer,” in Lecture Notes In Computer Science, Vol. 5099, pp.378-385, 2008.
[13] J. F. Lichtenauer, E. A. Hendriks, and M. J. T. Reinders , “Sign Language Recognition by Combining Statistical DTW and Independent Classification,” in IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. 30, No. 11, pp.2040-2046, 2008.
[14] M. V. Lamar, M. S. Bhuiyan, and A. Iwata , “T-CombNET - A Neural Network Dedicated to Hand Gesture Recognition,” in Lecture Notes In Computer Science, Vol. 1811, pp.613-622, 2000.
[15] E. Stergiopoulou, N. Papamarkos, and A. Atsalakis, “ Hand Gesture Recognition Via a New Self-organized Neural Network,” in Lecture Notes In Computer Science, Vol. 3773, pp.891-904, 2005.
[16] Y. Fang, J. Cheng, K. Wang, and H. Lu, “Hand Gesture Recognition Using Fast Multi-scale Analysis,” in Proceedings of IEEE international Conference on Image and Graphics, 2007.
[17] Y. T. Chen and K. T. Tseng, “Multiple-angle Hand Gesture Recognition by Fusing SVM Classifiers,” in Proceedings of the 3rd IEEE International Conference on Automation Science and Engineering, pp. 527-530, 2007.
[18] 劉東樺,「以適應性膚色偵測與動態歷史影像為基礎之即時手勢辨識系統」,大同大學資訊工程研究所,碩士論文,民國九十八年七月。
[19] 曾士宏,「即時手勢辨識系統之應用」,淡江大學電機工程研究所,碩士論文,民國九十八年六月。
[20] M. Al-Rajab, D. Hogg, and K. Ng, “A Comparative Study on Using Zernike Velocity Moments and Hidden Markov Models for Hand Gesture Recognition,” in Articulated Motion and Deformable Objects, pp. 319-327, 2008.
[21] Y. H. Lee and C. Y. Tsai, “Taiwan sign language (TSL) recognition based on 3D data and neural networks,” Expert Systems with Applications 36, pp. 1123-1128, 2009.
[22] E. Stergiopoulou and N. Papamarkos, “A New Technique for Hand Gesture Recognition, ” in International Conference on Image Processing, 2006.
[23] M. Sonka, V. Hlavac and R. Boyle , Image Processing, Analysis, and Machine Vision, PWS Publisher, 2008.
[24] A. R. Smith, “Color Gamut Transform Pairs,” Computer Graphics, Vol. 12(3), pp.12-19,1978.
[25] G. R. Bradski, “Computer vision face tracking for use in a perceptual user interface,” in Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 214-129, Oct. 1998.
[26] J. G. Allen, R. Y. D. Xu, and J. S. Jin ,“Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces,” Proc. Pan-Sydney Area Workshop on Visual Information Processing, pp.3-7, 2003.
[27] Intel Corporation, Open Source Computer Vision Library Reference Manual, 2001.
[28] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 2002.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2009-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明