博碩士論文 965201121 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.147.7.185
姓名 陳俞佐(Yu-Tso Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 寬範圍電壓操作之超低功率全數位式鎖相迴路
(An Ultra Low Power All Digital PLL for WidePower Supply Range)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一寬範圍電壓操作之超低功率全數位式鎖相迴路,不僅擁有低功率上的優點,並且在電源操作電壓上可從1.8 V 提升至3.6 V 的寬範圍設計,使用新型責任週期校正器電路獲得責任週期50%,並提出以環型振盪器和除頻器組合的數位控制振盪器之電路設計,使其可操作在寬範圍操作電壓。全數位式鎖相迴路晶片之製作以TSMC 0.35 um 2P4M 製程實現晶片,當操作電壓為1.8 V 時,其操作頻率範圍為1.5 MHz ~ 11.44 MHz,而操作電壓為3.6 V 時,其操作頻率範圍為1.5 MHz ~ 11.44 MHz,並且鎖定時間在23 個輸入週期內鎖定。整體晶片的面積為680 x 680 um2,核心電路的面積為383 x 368 um2 ,而新型責任週期校正器電路之責任週期在輸出頻率為8.38 MHz 時更可達50±0.8%,其輸出訊號之最大抖動量(P2P Jitter)的百分比為3% (操作電壓為1.8 V 為3.7 ns 而操作電壓為3.6 V 為3.6 ns),並且可應用於數位電子式水表中之微處理器裡。在電流消耗部份操作電壓為1.8 V 時更只有36 uA,其功率消耗在操作電壓為1.8 V僅有64 uW 而在操作電壓為3.6 V 下也僅有234 uW。
摘要(英) In this work, an ultra low power all digital phase locked loop(ADPLL) has wide power supply voltage range from 1.8 V to 3.6 V. ADPLL uses the proposed duty cycle corrector for 50% duty cycle. The ring oscillator and divider are used for digital controlled oscillator(DCO). Thus, DCO can operate wide power supply voltage range. ADPLL is implemented by TSMC 0.35 um 2P4M process. The output frequency range is 1.5 MHz ~ 11.44 MHz at 1.8 V, and output frequency range is 4.5 MHz ~ 24.49 MHz at 3.6 V. The locking time of ADPLL is less than 23 reference clock cycles. The chip area and core area are 680 x 680 um2 and 383 x 368 um2, respectively. The proposed duty cycle corrector is 50±0.8% at 8.38 MHz. The peak-to-peak jitter of ADPLL is 3% at 8.38 MHz for digital water meter application of microcontroller(3.7 ns at 1.8 V and 3.6 ns at 3.6 V). The operating supply current is less than 36 uA at 1.8 V, and power consumption is 64 uW at 1.8 V and 234 uW at 3.6 V.
關鍵字(中) ★ 全數位式鎖相迴路
★ 數位控制振盪器
★ 寬範圍電源電壓
★ 責任週期校正器
★ 低電源電流
關鍵字(英) ★ all digital PLL
★ digital controlled oscillator
★ duty cycle corrector
★ wide supply voltage range
★ low supply current.
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 錄 VII
表 目 錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的及用途 2
1.3 論文架構 4
第二章 全數位式鎖相迴路先前技術探討 5
2.1 鎖相迴路種類簡介 5
2.1.1 線性鎖相迴路(LPLL) 5
2.1.2 數位式鎖相迴路(DPLL) 6
2.1.3 全數位式鎖相迴路(ADPLL) 7
2.2 全數位式鎖相迴路之設計考量 8
2.2.1. 低功率數位控制振盪器之全數位式鎖相迴路 [1] 8
2.2.2. 串接式動態頻率計數迴路之全數位式鎖相迴路 [2] 10
2.2.3. 寬範圍電壓操作之全數位式鎖相迴路 [3] 11
2.2.4. 可重組態數位濾波器之全數位鎖相迴路 [4] 12
2.2.5. 實現雜訊降低技術之全數位式鎖相迴路 [5] 14
2.3 全數位式鎖相迴路之設計期許 15
第三章 具有新型責任週期校正器之數位控制振盪器 16
3.1 設計概念 16
3.2 數位控制振盪器 17
3.3 新型責任週期校正器 19
3.4 公式推導 23
第四章 寬範圍電壓操作之超低功率全數位式鎖相迴路 26
4.1 電路架構與操作 26
4.1.1 鎖定流程圖 27
4.1.2 鎖定模式 28
4.2 控制器電路 30
4.3 逐漸近似暫存器電路 31
4.4 計數器電路 34
4.5 電流偵測器電路 35
4.6 比較器電路 40
4.7 準位轉換器電路 41
第五章 電路模擬與晶片量測結果 43
5.1 設計流程 43
5.2 電路模擬 44
5.3 電路佈局與晶片照像圖 47
5.4 環境設定 50
5.5 量測結果 52
5.6 量測佈局比較 62
第六章 結論與未來研究方向 64
6.1 結論 64
6.2 未來研究方向 65
參考文獻 66
參考文獻 [1] T.-C. Chao and W. Hwang, ‘‘A 1.7mW all digital phase-locked loop with new gain generator and low power DCO,” in Proc. IEEE Int. Symp. Circuit and Systems, vol. 5, May 2006, pp. 4867-4870.
[2] P.-L Chen, C.-C. Chung, J.-N. Yang, and C.-Y. Lee, ‘‘A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications,’’ IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1275-1285, Jun. 2006.
[3] J.A. Tierno, A.V. Rylyakov, and D.J. Friedman, ‘‘A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI,’’ IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[4] S.-Y. Yang and W.-Z. Chen, ‘‘A 7.1mW 10GHz all-digital frequency synthesizer with dynamically reconfigurable digital loop filter in 90nm CMOS,’’ in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2009, pp. 90-91a.
[5] E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, and F. Svelto, ‘‘A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques,’’ IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 824-834, Mar. 2009.
[6] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, ‘‘An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors,’’ IEEE J. Solid-State Circuits, vol. 30, no. 4, pp. 414-422, Apr. 1995.
[7] C.-C. Chung and C.-Y. Lee, ‘‘An all-digital phase-locked loop for high-speed clock generation,’’ IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
[8] T. Olsson and P. Nilsson, ‘‘A digitally controlled PLL for SoC applications,’’ IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
[9] G.-K. Dehng, J.-M. Hsu, C.-Y. Yang, and S.-I. Liu, ‘‘Clock–deskew buffer using a SAR-controlled delay-locked loop,’’ IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1128-1136, Aug. 2000.
[10] C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, ‘‘A family of low-power truly modular programmable dividers in standard 0.35-um CMOS technology,’’ IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1039-1045, Jul. 2000.
[11] J. Lin, B. Haroun, T. Foo, J.–S. Wang, B. Helmick, S. Randall, T. Mayhugh, C. Barr, and J. Kirkpatric, ‘‘A PVT tolerant 0.18MHz to 600MHz self-calibrated digital PLL in 90nm CMOS process,’’ in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2004, pp. 488-541.
[12] A. Gundel and W. N. Carr, ‘‘Ultra low power CMOS PLL clock synthesizer for wireless sensor nodes,’’ in Proc. IEEE Int. Symp. Circuit and Systems, vol. 5, May 2007, pp. 3059-3062.
[13] J.-S. Wang, Y.-M Wang, C.-H. Chen, and Y.-C. Liu, ‘‘An ultra-low-power fast-lock-in small-jitter all-digital DLL,’’ in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2005, pp. 422-607.
[14] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, ‘‘A portable digitally controlled oscillator using novel varactors,’’ IEEE Trans. on Circuit and Systems II, vol. 52, pp. 233-237, May 2005.
[15] A. Alvandpour, R.K. Krishnamurthy, D. Eckerbert, S. Apperson, B. Bloechel, and S. Borkar, ‘‘A 3.5GHz 32mW 150nm multiphase clock generator for high-performance microprocessors,’’ in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2003, pp. 112-482.
[16] J. Lee and B. Kim, ‘‘A low-noise fast-lock phase-locked loop with adaptive bandwidth control,’’ IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1137-1145, Aug. 2000.
[17] Y.-M Wang and J.-S. Wang, ‘‘An all-digital 50% duty-cycle corrector,’’ in Proc. IEEE Int. Symp. Circuit and Systems, vol. 2, May 2004, pp. 925-928.
[18] Y.-C. Jang, S.-J. Bae, and H.-J. Park, ‘‘CMOS digital duty cycle correction circuit for multi-phase clock,’’ IEE Electronics Letters, vol. 39, pp. 1383-1384, Sep. 2003.
[19] C. Yoo, C. Jeong, and J. Kih, ‘‘Open-loop full-digital duty cycle correction circuit,’’ IEE Electronics Letters, vol. 41, pp. 635-636, May 2005.
[20] Y.-J. Jung, S.-W. Lee, D. Shim, W. Kim, C. Kim, and S.-I. Cho, ‘‘A dual-loop delay-locked loop using multiple voltage-controlled delay lines,’’ IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 784-791, May 2001.
[21] D. Sheng, C.-C. Chung, and C.-Y. Lee, ‘‘An ultra-low-power and portable digitally controlled oscillator for SoC applications,’’ IEEE Trans. on Circuit and Systems II, vol. 54, pp. 954-958, Nov. 2007.
[22] B.-M. Moon, Y.-J. Park, and D.-K. Jeong, ‘‘Monotonic wide-range digitally controlled oscillator compensated for supply voltage variation,’’ IEEE Trans. on Circuit and Systems II, vol. 55, pp. 1036-1040, Oct. 2008.
[23] M.-H. Chang, Z.-X. Yang, and W. Hwang, ‘‘A 1.9mW portable ADPLL-based frequency synthesizer for high speed clock generation,’’ in Proc. IEEE Int. Symp. Circuit and Systems, vol. 10, May 2007, pp. 1137-1140.
[24] C.-T. Wu, W. Wang, I.-C. Wey, and A.-Y. Wu, ‘‘A scalable DCO design for portable ADPLL designs,’’ in Proc. IEEE Int. Symp. Circuit and Systems, vol. 6, May 2005, pp. 5449-5452.
[25] P.–L. Chen, C.-C. Chung, and C.-Y. Lee, ‘‘An all-digital PLL with cascaded dynamic phase average loop for wide multiplication range applications,” in Proc. IEEE Int. Symp. Circuit and Systems, vol. 5, May 2005, pp. 4875-4878
[26] K. Sundaresan, P. E. Allen, and F. Ayazi, ‘‘Process and temperature compensation in a 7-MHz CMOS clock oscillator,’’ IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
[27] J.-C. Liu, ‘‘All digital phase lock loop using signal-edge-trigger DCO,” TKU MS. Thesis, 2006.
[28] H.–Y. Huang, J.-C. Liu, and K.-H. Cheng, ‘‘All-digital PLL using pulse-based DCO,” in Proc. IEEE Int. Conf. on Electronics Circuit and Systems, Dec. 2007, pp. 1268-1271
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2009-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明