博碩士論文 92323109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.188.203.142
姓名 黃威華(Wei-Hua Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 生物組織擬態模型之近紅外光的光電量測
(NIR Electro-optic Measurement for Pseudo-model of Biological Tissues)
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究
★ TFT-LCD 導光板衝擊模擬分析及驗證研究★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 數位機上盒掉落模擬分析及驗證研究★ 全自動微鑽針影像檢測系統之研究
★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究
★ 低成本輕量化機械手臂之研究★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析
★ 旋轉機械狀態監測-以傳動系統測試平台為例★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討
★ 時頻分析於機械動態訊號之應用★ VKF階次追蹤之探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
擴散式光學斷層掃描是一種新型的斷層造影技術,其優點是對於人體不具有侵入性和幅射傷害。本論文描述一個自行搭建的近紅外光斷層掃瞄設備,並且使用人造假體去模擬生理組織。所使用的近紅外光斷層掃瞄術設備,搭建在一個旋轉機構上,以單一光源和偵測器藉由旋轉機構掃瞄人造假體,從而獲得實驗數據。人造假體則是使用高散射微形球和人造脂類Intralipid去模擬生理組織的吸收與散射等光學特性;藉由人造假體的幫助,可以免除量測真正的生理組織光學特性,而能得到相似的實驗結果。在光學特性影像重建的反算法部份,初始猜值相當重要,同樣的組織周圍光功率量測結果,可能因為初始猜值的差異,而造成重建影像與實際狀況截然不同,這也就是影像反算並非唯一解。本研究進行並建立人造假體技術,將能完成實驗結果的資料庫,幫助影像重建初始猜值的正確性,並能加快影像重建的速度。論文研究中,提出一個擬態模型的方法,這個擬態模型是使用1% Intralipid去模擬豬肉,3% Intralipid去模擬骨頭;使用擬態模型的目的,是為了要得到和真實組織量測訊號相似的分佈,由於擬態模型的訊號強度往往比真實組織要大,較好量測,現階段可以較不受硬體之限制,對於發展擴散式光學斷層掃瞄技術極有助益。
摘要(英) Abstract
Diffuse optical tomography is a new tomographic technique. Its advantages include noninvasive and nonradiation to human body. The thesis describes an self-developed NIR diffuse optical tomography instrument based on rotary mechanism, and conducts a phantom study for simulating biological tissues. The NIR tomography system is built on a rotary scanning device associated with single rotating source and detector to scan designed phantoms and acquire experimental data. The phantoms are constructed by employing high-scattering polystyrene microspheres and Intralipid to mimic the scattering and absorption properties of tissues. With the help of phantoms, similar experimental results can be obtained without measuring real tissues. In the computation of optical-property image reconstruction, appropriate initial guess is crucial. The reconstructed image from measured optical power around tissues may be totally different from actual state just due to different initial guess. It says the result of image reconstruction using inverse computation is in general not a unique solution. The study performs a phantom technique and completes a experimental data base. This helps the accuracy of the initial guess and speeds up the image reconstruction afterwards. Additional, a pseudo-model technique for real tissues is proposed and performed. The pseudo-model is to employ 1 % Intralipid as a background tissue and 3 % Intralipid as an inclusion to mimic a bone. The purpose of using pseudo-model is to obtain the similar distribution of signal from real tissues. The intensity of pseudo-model signal is greater than that of real tissues signal so the signal can be acquired. The measurement would not be limited by hardware constraint. The technique offers a great aid for the development of diffuse optical tomography.
關鍵字(中) ★ 人造假體
★ 近紅外光擴散式光光學斷層掃瞄
關鍵字(英) ★ pseudo-model
★ phantom
★ NIR diffuse optical tomography
論文目次 Contents
ABSTRACT…………………………………………………………………………...I
CONTENTS………………………………………………………………………….II
LIST OF FIGURES………………………………………………………………...IV
LIST OF TABLES…………………………………………………………………VII
CHAPTER 1 INTRODUCTION……………………………………...…………….1
1.1 Motivation………………………………………………………………………1
1.2 Literature Review……………………………………………………………….4
1.3 Overview of the Thesis………………………………………………………….6
CHAPTER 2 INTRODUCTION TO MEDICAL IMAGING……………………..7
2.1 X-ray…………………………………………………………………………….7
2.2 Computed Tomography…………………………………………………………8
2.3 Magnetic Resonance Imaging…………………………………………………12
2.4 Position Emission Tomography………………………………………………..12
2.5 Ultrasound Imaging…………………………………………………………...14
CHAPTER 3 BACKGROUND KNOWLEDGE…………...……………………..16
3.1 Optical Property……………………………………………………………….16
3.1.1 Absorption……………………………………………………………….16
3.1.2 Scattering………………………………………………………………...17
3.1.3 Anisotropy……………………………………………………………….18
3.2 Optical Property of Tissues……………………………………………………20
3.2.1 Water…………………………………………………………………….20
3.2.2 Hemoglobin……………………………………………………………21
3.2.3 Fat………………………………………………………………………..22
3.2.4 Tissue scattering spectrum………………………………………………23
3.3 NIR Instrumentation…………………………………………………………..23
3.3.1 Continuous wave instrument……………………………………………23
3.3.2 Time domain instrument…………………………………………………24
3.3.3 Frequency domain instrument…………………………………………25
3.3.4 Summary………………………………………………………………26
3.4 NIR application………………………………………………………………..27
3.4.1 Single point measurement……………………………………………….27
3.4.2 Topography………………………………………………………………27
3.4.3 Tomography……………………………………………………………..28
3.5 Basic anatomy…………………………………………………………………29
CHPATER 4 EXPERIMENT INSTRUMENT AND METHOD…………...……31
4.1 Flow Chart of NIR Tomography Research……………………………………31
4.2 Hardware Instrument…………………………………………………………32
4.3 Experimental Instrument and Material………………………………………34
4.4 Image Reconstruction………………………………………………………….35
CHAPTER 5 PHANTOM STUDY………………….……………………………..37
5.1 Microsphere Phantom…………………………………………………………37
5.2 IntralipidTM Phantom…………………………………………………………..39
5.3 Discussion……………………………………………………………………..41
CHAPTER 6 EXPERIMENTAL RESULT AND DISCUSSION……………...…42
6.1 Microsphere Phantom Measurement…………………………………………..42
6.1.1 Homogeneous phantom………………………………………………….42
6.1.2 Heterogeneous phantom…………………………………………………45
6.2 Intralipid Measurement………………………………………………………..50
6.2.1 Homogeneous phantom………………………………………………….51
6.2.2 Homogeneous Intralipid database……………………………………….52
6.2.3 Pseudo-model……………………………………………………………58
6.3 Tissue Phantom Measurement………………………………………………58
6.4 Pseudo-model of Real Tissues………………………………………………66
6.5 Discussion……………………………………………………………………..75
CHAPTER 7 CONCLUSION AND FUTURE WORK…………………………..76
REFERENCE……………………………………………………………………….78
參考文獻 Reference
R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli and G. Valentini, 1997, “A Solid Tissue Phantom for Photon Migration Studies,” Physics in Medicine and Biology, Vol. 42, No. 10, pp. 1971-1979.
M. Cutler, 1929, “Transillumination as an Aid in the Diagnosis of Breast Lesions,” Surgery, Gynecology and Obsterics, Vol. 48, pp.721-729.
E. E. Gorodnichev and D. B. Rogozkin, 1995, “Small Angle Multiple Scattering in Random Inhomogeneous Media,” Journal of Experimental and Theoretical Physics, Vol. 107, pp. 209-235.
G.. M. Hale and M. R. Querry, 1973, “Optical Constants of Water in the 200-nm to 200-ųm Wavelength Region,” Applied Optics, Vol. 12, No. 3, pp. 555-563.
A. H. Hielschera, A. Y. Bluestonea, G. S. Abdoulaeva, A. D. Klosea, J. Laskera, M. Stewart, U. Netzc and J. Beuthanc, 2002, “Near-infrared Diffuse Optical Tomography,” Disease Markers, Vol. 18, pp. 313-337.
E. M. C. Hillman, 2002, “Experimental and Theoretical Investigations of Near Infrared Tomographic Imaging Methods and Clinical Applications,” Ph.D. thesis, University College London.
B. L. Horecker, 1943, “The Absorption Spectra of Hemoglobin and Its Derivatives in the Visible and Near Infrared Regions,” Journal of Biological Chemistry, Vol. 148, pp. 173-183.
H. Jiang, 1996, “Reconstructed Near Infrared Diffusion Imaging for Breast Cancer Detection,” Ph.D. thesis, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
F. F. Jobsis, 1977, “Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters,” Science, Vol. 198, No. 4323, pp. 1264-1267.
B. Kevles, 2000, Naked to the Bone: Medical Imaging in the Twentieth Century, Perseus Publishing.
F. Martini and E. Bartholomew, 2000, Essentials of Anatomy & Physiology, 2nd edition, Prentice-Hall. Inc.
T. O. McBride, 2001, “Spectroscopic Reconstructed Near Infrared Tomographic Image for Breast Cancer Diagnosis,” Ph.D. Thesis, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
M. C. Pan, C. H. Cheng, W. H. Huang, M. C. Pan and C. S. Tseng, 2005, “NIR Image Reconstruction Using a Single-Rotating-Source/Detector Scanning Device,” Proceeding ECBO.
V. G. Peters, D. R. Wymant, M. S. Patterson and G. L. Frank, 1990, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Physics in Medicine and Biology, Vol. 35, No. 9, pp. 1317-1334.
B. W. Pogue, M. Testorf, T. McBride, U. Osterberg and K. Paulsen, 1997, “Instrumentation and Design of a Frequency Domain Diffuse Optical Tomography Imager for Breast Cancer Detection,” Optics Express, Vol. 1, No. 13, pp.391-403.
W. C. Roentgen, 1895, “On a New Kind of Rays,” Physical-Medical Society of Wurzburg, December 28.
F. E. W. Schmidt, 1999, “Development of a time-resolved optical tomography system for neonatal brain imaging,” Ph.D. thesis, University College London.
H. J. van Staveren, C. J. M. Mose, J. van Marie, S. A. Prahl and M. J. C. van Gemert, 1991, “Light scattering in Intralipid-10% in the wavelength range of 400-1100nm, ” Applied Optics, Vol. 30, No. 31, pp. 4507-4514.
S. Takatani and M. D. Graham, 1987, "Theoretical Analysis of Diffuse Reflectance from a Two-layer Tissue Model, "IEEE Transactions on Biomedical Engineering, Vol. 26, pp. 656-664.
C. L. Tsai, Y. F. Yang, C. C. Han, J. H. Hsieh, and M. Chang, 2001, “Measurement and Simulation of Light Distribution in Biological Tissues,” Applied Optics, Vol. 40, No. 31, pp. 5770-5777.
R. L. P. van Veen, H. J. C. M. Sterenberg, A. P. A. Torricelli and R. Cubeddu, 2000, “Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical meetings (Washington: Optical Society of America).
B. C. Wilson and S. L. Jacqes, 1990, “Optical Reflectance and Transmittance of Tissues: Principles and Applications,” IEEE Journal of Quantum Electron, Vol. 26, No. 12, pp.2186-2199.
指導教授 黃衍任、潘敏俊
(Yean-Ren Huang、Min-Chun Pan)
審核日期 2005-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明