博碩士論文 92323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.218.184.214
姓名 古健平(Chien-Ping Ku)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以DSP與FPGA實現內藏式永磁同步電動機之驅動系統
(Implementation of Interior Permanent Magnet Synchronous Motor Drive System with DSP and FPGA)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
本論文主要在研究有轉軸編碼器的內藏式永磁同步電動機的驅動系統。首先比較直流無刷與永磁式同步馬達的架構與差異,再介紹何謂內藏式永磁同步電動機並介紹其特性、與數學方程式。而相較於其它馬達,永磁式同步馬達(Permanent magnet synchronous motor, PMSM)具有高功率密度、高效率以及高加速能力等優點,使其已逐漸被廣泛地應用。由於本論文主要建構於有轉軸編碼器的情況,故接下來主要探討的方向為馬達內部參數估測與向量控制法則。在單晶片控制方面,使用DSP2407做主要向量控制運算與伺服控制,FPGA為電流向量控制與雜訊干擾消除。而電流控制為整個架構的核心之一,為了能準確的追蹤到電流命令減少相位落後,採用前饋控制器為控制器之一,在此需要得到馬達內部參數,如電阻、電感值。由於轉軸編碼器在安裝過程中不一定有對應馬達本身電氣角,故在此需要對其轉子磁極的偏量做一估測補償。為了簡化設計與降低硬體實現之複雜度,本論文採用模組化設計,將主要單元再細分為各個功能單純的模組。在周邊處理能力方面,可直接將電流回授量由類比/數位轉換器傳回給FPGA及增量光編碼器傳回給DSP2407。DSP2407可對FPGA做調整與觀測各個參數及變數,所有參數及變數均可即時(real-time)讀出或寫入。
摘要(英) ABSTRACT
The thesis discusses the drive system of Interior Permanent Magnet Synchronous Motors (IPMSM) with encoder. First, compared with the brushless DC motor, and introduced what is IPMSM and its characteristic and mathematical model. The IPMSM is provided with high power density, high efficiency and high acceleration, so it becomes based on the situation of motor with encoder, we perform the estimation of motor parameter and vector control. DSP2407 is employed to achieve vector control and servo control, and make use of FPGA is used to achieve current control and disturbance cancellation. Current control is one of the center frameworks of motor drive system. In order to track current command exactly and reduce phase lag, we use feedforward controller to be one of the controllers in motor drive system. So we need to know the motor parameter, such as resistance and inductance. When encoder was assembled on motor, the encoder was not sure to aim at the electrical angle of motor. So we should calibrate original angle from Z pulse to rotor magnetic pole. In order to simplify the design and reduce the perplexity of hardware, the thesis adopts module design. In operation, FPGA get the current feedback from current sensors and A/D converter, and DSP2407 get position from encoder. DSP2407 could observe and modulate the parameters of FPGA, and all of the parameters could be written in or read out online.
關鍵字(中) ★ 驅動器
★ 永磁同步電動機
關鍵字(英) ★ Drive System
★ Magnet Synchronous Motor
論文目次 Contents
LIST OF FIGURE XIII
ABSTRACT XV
CHAPTER 1 INTRODUCTION 1
1.1 PMSM AND BLDC 1
1.2 ORGANIZATION OF THIS THESIS 7
CHAPTER 2 MATHMATICAL MODEL OF IPMSM 9
2.1 INTRODUCTION 9
2.2 MATHEMATICAL MODEL IN ABC-AXIS FRAME 9
2.3 MODEL IN D-Q AXIS FRAME 10
CHAPTER 3 PARAMETER ESTIMATION 17
3.1 INTRODUCTION 17
3.2 WINDING RESISTANCE AND INDUCTANCE 17
3.2.1 Stator Resistance 17
3.2.2 Stator Flux Linkage 17
3.2.3 d-q axis Inductance 18
3.3 ROTOR ANGLE AMENDMENT 18
CHAPTER 4 HARDWARE AND SOFTWARE STRUCTURE 21
4.1 BLOCK OF THE SYSTEM 21
4.2 DSP INTRODUCTION 21
4.3 FPGA INTRODUCTION 23
4.4 DESIGN METHOD OF FPGA 25
4.4.1 Interface Block 26
4.4.2 Current Control Block 28
4.4.3 Decoder Block 30
4.5 SOFTWARE STRUCTURE 30
CHAPTER 5 EXPERIMENT RESULT 32
5.1 EXPERIMENT ENVIRONMENT 32
5.2 EXPERIMENT RESULT 32
5.2.1 Current Feedback with Filter 32
5.2.2 Test and Verify Current Command 33
5.2.3 Velocity Command 34
5.3 DISCUSSION 39
CHAPTER 6 CONCLUSION AND FUTURE WORK 40
REFERENCES 41
參考文獻 References
[1] T. Jahans, J. B. Kliman and T.W. Neumann, “Interior permanent-magnet synchronous motors for adjustable-speed drives,” IEEE Trans. on Ind. Applicat., vol. IA-22, no.4, July/Aug. 1986.
[2] J. F. Gieras and M. Wing, Permanent Magnent Motor Technology-Design and Ap-plications. Marcel-Dekker, 2002.
[3] P. Pillay and P. Freere, “Literature survey of permanent magnet ac motors and drives,” in Proc. IEEE IAS Rec. pp. 74V84, 1989.
[4] J. R. Hendershot and T.J.E. Miller, Design of Brushless Permanent- Magnet Motors. Oxford, UK: Oxford Science, 1994.
[5] R. Krishnan, Electric Motor Drives-Modelling, analysis and Cntrol. Prentice Hall, 2001.
[6] P. Pillay and R. Krishnan, Modeling of permanent magnet motor drives," IEEE Trans on Ind. Electron., Vol. 35, no. 4, pp. 537-541, Nov. 1988.
[7] P. Krause, Analysis of Electric Machinery. New York : McGrawHill, 1986
[8] A. Consoli, G. Scarcella and A. Testa, “Industry application of zero-speed sensorless control techniques for PM synchronous motors,” IEEE Trans on Ind. Applicat., vol. 37, no. 2, pp. 513-521, Mar/Apr 2001.
[9] Y. S. Lai, F. S. Shyu, S.S. Tseng, “New initial position detection technique for three phase brushless DC motor without position and current sensors,” IEEE Trans on Ind. Applicat., vol. 39, no. 2, pp. 485-491, Mar/Apr 2003.
[10] P. C. Sen, Principle of Electric Machines and Power Electronics, ed. Canada: John Wiley & Sons, Inc., 1997.
[11] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1988.
[12] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.
[13] H. H. Moghbelli and M. H. Rashid, “Performance review of AC adjustable drives,” Conf. Rec. IEEE IECON, vol. 2, pp. 895-902, 1990.
[14] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, vol. 2, pp. 840-845, 1999.
[15] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part I,” IEEE Trans. Ind. Applicat., vol. 36, no. 5, pp. 1455-1466, 2000.
[16] G. L. Donner, W. L. Subler and S. T. Evon, “Motor primer- part II,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 955-965, 2002.
[17] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part III,” Conf. Rec. IEEE IAS, pp. 137-146, 2002.
[18] J. Holtz, “Pulsewidth modulation - a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[19] D. Zmood and D. G. Holms, “Practical performance limitations for PWM strategies,” Conf. Rec. IEEE IAS, vol. 2, pp. 1245-1252, 1998.
[20] F. Blaabjerg and J. K. Pedersen, “Optimized design of a complete three-phase PWM-VS inverter,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 567-577, 1997.
[21] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall Inc., 2001.
[22] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989.
[23] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw Inc., 1994.
[24] G. H. Kang, J. P. Hong, G. T. Kim and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, 2000.
[25] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
[26] R. F. Schiferl and T. A. Lipo, “Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications,” IEEE Trans. Ind. Applicat., vol. 26, no. 1, pp. 115-123, 1990.
[27] S. Morimoto, Y. Takeda and T. Hirasa, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Applicat., vol. 26, no. 5, pp. 866-871, 1990.
[28] W. L. Soong and T. J. E. Miller, “Theoretical limitations to the field-weaking performance of the five classes of brushless synchronous AC motor drive,” Conf. IEEE IEMDC, no. 376, pp. 127-132, 1993.
[29] T. M. Jahns, “Component rating requirements for wide constant power operation of interior PM synchronous machine drives,” Conf. Rec. IEEE IAS, vol. 3, pp. 1697-1704, 2000.
[30] IEC 34-4: Methods for determining synchronous machine quantities from tests, Internation Electrotechnical committee, June 1995.
[31] IEC 34-2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles), Internation Electrotechnical committee, Nov. 1996.
[32] S. Weisgerber, A. Proca and A. Keyhani, ”Estimation of permanent magnet motor parameters,” Conf. Rec. IEEE IAS, vol. 1, pp. 29-34, 1997.
[33] D. Y. Ohm, “Dynamic model of PM synchronous motors,” Available: http://www. drivetechinc.com/articles/IM97PM_Rev1forPDF.pdf.
[34] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1265-1272, 2001.
[35] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 41-47, 2003.
[36] K. Yamamoto, K. Shinohara and H. Makishima, ”Characteristics of permanent magnet synchronous motor driven by PWM inverter with voltage booster,” Conf. Rec. IEEE IEMDC, vol. 3, pp. 1556-1562, 2003.
[37] F. D. Kieferndorf, M. Forster and T. A. Lipo, ”Reduction of DC bus 161 capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 607-614, 2004.
[38] N. S. Nise, Control System Engineering, ed. John Wiley and Sons. Inc., 2000.
[39] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, ed. Prentice Hall Inc., 2002.
[40] F. Nekoogar and G. Moriry, Digital Control and Digital Signal Processing, Prentice Hall Inc., 1999.
[41] G. F. Franklin, J. D. Powell and M. Workman, Digital Control of Dynamic 163 Systems, ed. Addison Wesley Inc., 1998.
[42] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, ed. New Jersey: Prentice Hall Inc., 1999.
[43] “Considerations for Selecting a DSP Processor,” Application Note, AN-393, 1994.
[44] “Fixed-Point Blockset User’s Guide,” The Math Works Inc., 2000.
[45] Texas Instruments, “TMS320 DSP Product Family Glossary”, 1998.
[46] Bimal K. Bose, “Modern Power Electronics and AC Drives”, 2001
[47] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
[48] Texas Instruments, “TMS320 DSP Product Family Glossary”, 1998.
[49] Xilinx, Inc., “Data book”, 1997.
[50] Altera Corp., “User Guide”, 1997.
[51] 唐佩忠,“ VHDL與數位邏輯設計”, 2000.
[52] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford, 1996.
[53] C. M. Liaw and J. L. Chen, “Performance Improvement Study for a Permanent Magnet System Synchronous Motor Drive with Variable-Voltage DC link,” National Tsing Hua Univ. 2004.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明