國立中央大學八十七學年度轉學生入學試題卷

數學系 三年級

科目: 高等微積分

共 4 頁 第 1 頁

- 一、簡答題:請寫出理由、例子、反例、或反証,每題十分。
 - 1. Is the function $f(x) = \frac{1}{x}$ uniformly continuous on $[1, \infty)$?
 - 2. Evaluate the limit $\lim_{x\to 0^+} (\tan x)^x$.
 - 3. Must every Cauchy sequence $\{a_n\} \subseteq \mathbb{R}$ be bounded?
 - 4. Let $f: \mathbb{R}^n \hookrightarrow \mathbb{R}^m$ be a continuous function and $A \subseteq \mathbb{R}^n$ be bounded. Is f(A) bounded in \mathbb{R}^m ?
 - 5. Each f_n is a polynomial and $\{f_n\}$ converges uniformly to f on [0,1]. Must f be a polynomial?
 - 6. Is any linear map $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ continuous?
- 二、證明題,每題二十分。
 - 1. Suppose $\sum_{n=0}^{\infty} c_n x^n$ converges at x = R, and $0 < \epsilon < R$. Show that $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R + \epsilon, R \epsilon]$.
 - 2. Prove that we can solve $\begin{cases} xu + yv^2 = 0 \\ xv^3 + y^2u^6 = 0 \end{cases}$ uniquely for (u, v) as functions of (x, y) near (x, y, u, v) = (1, -1, 1, -1), and compute the values $\frac{\partial u}{\partial x}(1, -1), \frac{\partial u}{\partial y}(1, -1), \frac{\partial v}{\partial x}(1, -1)$, and $\frac{\partial v}{\partial y}(1, -1)$.