博碩士論文 93323001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.142.197.198
姓名 黃承俊(Cheng-Jyun Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 背閘極式碳奈米管電晶體之研究
(Study of back-gated carbon nanotube transistors)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文製作出背閘極式(back-gated)三極結構碳奈米管場效電晶體(Carbon nanotube field effect transistors, CNT-FETs)。結合半導體製程,以光學微影技術(photolithography)定義出元件圖案,再從元件間隙(gap)中成長橫向碳奈米管作為電晶體的通道(channel)部分。以鎳層(Ni layer)為催化金屬,並利用熱化學氣相沉積系統(Thermal chemical vapor deposition, Thermal CVD)合成碳管。成長溫度為750℃、碳源為甲烷1000 sccm並搭配氫氣 300 sccm、氮氣 200 sccm為載氣,以獲得理想的單根多壁碳奈米管(Multi-walled carbon nanotubes, MWNTs)橋接。
在研究中我們觀察到,當元件的gap越小時,比較容易獲得碳管的橫向橋接;而當氮氣比例增加時,碳管的成長數量會減少,同時經由拉曼(Raman)光譜分析可以發現其石墨化程度會跟著提高。電性量測方面,元件在低溫真空下具有雙極性(ambipolar)的現象;吸附大量水分子後,電性會有明顯的改變,去除水分子後又恢復;而經過真空熱退火400℃ 1小時,元件的電阻值可以從10.10 MΩ下降至1.79 MΩ且其轉移電導(transconductance)有下降的趨勢。
摘要(英) In this paper, we fabricated the back-gated carbon nanotube field effect transistors(CNT-FETs). Combining with the semiconductor fabrication techniques, we defined the pattern of devices by photolithography, and then we in-situ grew lateral CNTs as channel of transistors. Nickel layer was used to be the catalyst and we synthesized the multi-walled carbon nanotubes(MWNTs) by thermal chemical vapor deposition(Thermal CVD). The growth temperature was 750℃, methane 1000 sccm as carbon source and H2 300 sccm、N2 200 sccm as carrier gas to obtain ideal individual CNTs bridge.
We found that in the smaller gap of devices, the CNTs bridge were obtained more easily. As N2 flow ratio increased, the quantity of CNTs would reduce and simultaneously by the Raman spectra analysis, we observed that the degree of graphitization of CNTs would raise. In the aspect of electricity measurement, the ambipolar phenomenon of the devices at low temperature in vacuum were discovered. Furthermore, absorbing a lot of water molecules, the electronic properties of devices would alter, but after removing water molecules, they restored. It appeared, after annealing treatment, the resistance of CNT-FETs would reduce from 10.10 MΩ to 1.79 MΩ and the transconductance would reduce, too.
關鍵字(中) ★ 碳奈米管
★ 電晶體
★ 低溫量測
★ 退火
關鍵字(英) ★ annealing
★ low temperature measurement
★ transistor
★ carbon nanotube
論文目次 摘 要 I
謝 誌 III
目 錄 V
表 目 錄 VII
圖 目 錄 VIII
符 號 表 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3文獻回顧 3
第二章 碳奈米管的介紹 7
2.1碳奈米管的晶體結構及電學性質 8
2.2 碳奈米管之合成技術 12
2.3 碳奈米管之成長機制 14
2.4碳奈米管之獨特性質與應用 16
第三章 實驗流程與方法 18
3.1實驗流程 18
3.2製程設備與量測設備 19
3.3元件製作 22
3.4 Thermal CVD成長橫向碳奈米管步驟 26
3.5 拉曼光譜分析 27
3.6 電性量測分析 28
第四章 結果與討論 29
4.1 橫向碳奈米管之成長 29
4.1.1元件尺寸和碳奈米管成長之關係 29
4.1.2載氣比例對橫向碳奈米管成長之影響 30
4.2多壁碳奈米管場效電晶體之元件電性 34
4.2.1多壁碳奈米管場效電晶體之電性比較 34
4.2.2多壁碳奈米管場效電晶體之元件操作機制 40
4.3環境對多壁碳奈米管場效電晶體之影響 43
4.3.1真空低溫下之元件電性 43
4.3.2吸附大量水分子之元件電性 48
4.3.3退火處理後之元件電性 54
4.4製程溫度對不同閘極氧化層厚度的影響 60
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 65
參 考 文 獻 66
參考文獻 [1]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56.
[2]H. -S. Philip Wong, “Field Effect Transistors - From Silicon MOSFETs to Carbon Nanotube FETs”, IEEE CNF, 1 (2002) 103.
[3]F. L. Zhou, R. Huang, X. Zhang, “Vertical channel nMOSFET with an asymmetric graded lightly doped drain”, Microelectronic Engineering, 77 (2005) 365.
[4]Anurag Chaudhry and M. Jagadesh Kumar, “Controlling Short-Channel Effects in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review, “IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY”, 4 (2004).
[5]Zhonghai Shi, David Onsongo, Sanjay K. Banerjee, “Mobility and performance enhancement in compressively strained SiGe channel PMOSFETs”, Applied Surface Science, 224 (2004) 248.
[6]林宏年, 呂嘉裕, 林鴻志, 黃調元, “局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS)之材料、製程與元件特性分析(I)” 奈米通訊第十二卷第一期 (2005) 44。
[7]林鴻志, “奈米金氧半電晶體元件技術發展驅勢(II)”, 奈米通訊第七卷第二期 (2000)。
[8]Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, Hongjie Dai, “Ballistic carbon nanotube field-effect transistors”, Nature, 424 (2003) 654.
[9]Ali Javey, Ryan Tu,Damon B. Farmer, Jing Guo, Roy G. Gordon, Hongjie Dai, “High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts”, Nano Letters, 5 (2005) 345.
[10]Sander J. Tans, Alwin R. M. Verschueren, Cees Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49.
[11]R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris. “Single- and multi-wall carbon nanotube field-effect transistors”, Applied Physics Letters, 73 (1998) 2447.
[12]V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, “Carbon nanotube Inter- and Intramolecular Logic Gates”, Nano Letter, 1 (2001) 453.
[13]Jing Kong, Hyongsok T. Soh, Alan M. Cassell, Calvin F. Quate, Hongjie Dai, ”Synthesis of individual singlewalled carbon nanotubes on patterned siliconwafers”, Nature, 395 (1998) 878.
[14]Hyongsok T. Soh, Calvin F. Quate, Alberto F. Morpurgo, Charles M. Marcus, Jing Kong, Hongjie Dai, “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes”, Applied Physics Letters, 75 (1999) 627.
[15]Nathan R. Franklin, Qian Wang, Thomas W. Tombler, Ali Javey, Moonsub Shim, Hongjie Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems”, Applied Physics Letters, 81 (2002) 913.
[16]Y. Zhang, Aileen Chang, J. Cao, Q. Wang, W. Kim, Y. Li, Nathan Morris, Erhan Yenilmez, J. Kong, H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes” ,Applied Physics Letters, 79 (2001) 3115.
[17]Ali Javey, Qian Wang, Woong Kim, and Hongjie Dai, “Advancements in Complementary Carbon Nanotube Field-Effect Transistors”, IEDM Tech. Digest. (2003) 741.
[18]Ali Javey, Jing Guo, Damon B. Farmer, Qian Wang, Dunwei Wang, Roy G. Gordon, Mark Lundstrom, and Hongjie Dai, ”Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-K Gate Dielectrics”, Nano Letters, 4 (2004) 447.
[19]Ali Javey and Hongji Dai, “Carbon Nanotube Electronics”,
[20]T. W. Ebbesen, CRC press. Inc., (1997).
[21]W. Hoenlein, “New prospects for microelectronics: Carbon Nanotubes,” Jpn. J. Appl. Phys., 41 (2002) 4370.
[22]A. Thess et al., “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273 (1996) 483.
[23]S. B. Sinnott et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett., 315 (1999) 25.
[24]Derek W. Austin, Alex A. Puretzky, David B. Geohegan, Phillip F. Britt, Michael A. Guillorn, Michael L. Simpson, “The electrodeposition of metal at metal/carbon nanotube junctions”, Chemical Physics Letters, 361 (2002) 525.
[25]R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, ”Sub-20 nm Short Channel Carbon Nanotube Transistors”, Nano Letters, 5 (2005) 147.
[26]Yu-Ming Lin, Member, Joerg Appenzeller, Joachim Knoch, and Phaedon Avouris, “High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities”, IEEE TRANSACTIONS ON NANOTECHNOLOGY, 4 (2005) 481.
[27]Kenta Matsuoka, Hiromichi Kataura, Masashi Shiraishi, “Ambipolar single electron transistors using side-contacted single-walled carbon nanotubes”, Chem. Phys. Lett., 417 (2006) 540.
[28] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris, “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon nanotubes”, PHYSI CAL REV IEW LETTERS, 87 (2001) 256805-1.
[29]R. Czerw1, M. Terrones, J.-C. Charlier, X. Blase, B. Foley1, R. Kamalakaran, N. Grobert, H. Terrones, P. M. Ajayan, W. Blau, D. Tekleab, M. R¨uhle, and D. L. Carroll, ”Identification of Electron Donor States in N-doped Carbon Nanotubes”, arXiv:cond-mat/0011318, 20 (2000).
[30]Woong Kim, Ali Javey, Ophir Vermesh, Qian Wang, Yiming Li, and Hongjie Dai, “Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors”, Nano Letters, 3 (2003) 193.
[31]B. Babi´c, J. Furer, M. Iqbal and C. Schönenberger, “Suitability of carbon nanotubes grown by chemical vapor deposition for electrical devices”, AIP Conference Proceedings, 723 (2004) 574.
[32]Ruth Y. Zhang, Islamshah Amlani, Jeff Baker, John Tresek, and Raymond K. Tsui, ” Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst”, Nano Letters, 3 (2003) 731.
[33]陳紹良,以微波化學氣相沉積法成長奈米碳管之研究,國立中央大學機械所碩士論文,2003。
[34]蘇清源,奈米碳管控制成長之方法研究,國立中央大學機械所碩士論文,2005。
[35]楊博智,橫向碳奈米管的製造和傳導特性研究,國立嘉義大學光電暨固態電子研究所,2005。
[36]粘正勳,國立中央大學物理系。
[37]Jeong-O Lee , C Park , Ju-Jin Kim , Jinhee Kim, Jong Wan Park and Kyung-Hwa Yoo, “Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method”, J. Phys. D: Appl. Phys. 33 (2000) 1953.
[38]Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, S. Iijima,” Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods”, SCIENCE, 285 (1999) 1719.
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2006-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明