博碩士論文 93323014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.191.178.16
姓名 邱靖傑(Ching-Chieh Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 奈米碳管作為內連線應用之研究
(Study of carbon nanotubes for interconnect applications)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本實驗是使用IC微影製程的方式,在矽晶圓上製作出內連線引洞(Via)的結構,利用微波電漿化學氣相沉積系統(Microwave plasma chemical vapor deposition, MPCVD)在引洞結構中成長奈米碳管,來控制奈米碳管的定位成長,並且達到以奈米碳管來取代金屬內連線的目的。而在製作內連線引洞結構時,分別設計在相同範圍面積下,有單一引洞結構與陣列引洞結構且使用兩種不同金屬鉭(Ta)與鈦(Ti)當作下電極,最後沉積上電極金屬Ta與奈米碳管接觸完成二極體元件。再配合掃描式電子顯微鏡(SEM)、拉曼光譜儀(Raman spectroscopy)和I-V量測系統,分別探討在不同製程參數下,奈米碳管的形態與石墨化程度對其二極體元件電性的影響,並且比較兩種不同下電極金屬(Ta與Ti)在相同面積下,單一引洞與陣列引洞結構對二極體元件其電性的差異。
由本實驗的結果可以發現,奈米碳管的直徑隨著前處理電漿功率與基板溫度的增加而逐漸減小。而隨著成長電漿功率與基板溫度的增加,所成長奈米碳管的石墨化程度較好,元件的電阻值也較低。在相同面積下,陣列引洞結構之元件的電阻值,比單一引洞結構之元件的電阻值還小,且在相同製程參數下,以Ti為二極體元件的下電極時,其電阻值比Ta為下電極時所量測到的電阻值還小,因此在本實驗中以Ti為下電極時,基板溫度為650 ℃、前處理電漿功率為1200 W、成長電漿功率為800 W、甲烷氣體流量比例為20% 時,所成長的奈米碳管其石墨化程度最好(約為50%),並且量測到其二極體元件的電阻值也是最低(約為60 Ω)。
摘要(英) Abstract
This research is using microwave plasma chemical vapor deposition(MPCVD)to grow carbon nanotubes(CNTs). We use integrated-circuit(IC) photolithography to manufacture the structure of interconnect via in silicon wafer to control the growth of vertically aligned carbon nanotubes (CNTs) and achieve replacing the metal in the via by CNTs. We design a single-via and array-via in the same region with two different metals(Ta and Ti) as bottom electrode. We, finally, deposit Ta to connect with CNTs to accomplish CNT diode structure and make use of SEM, Raman spectroscopy, and I-V system to analysis diode structure. We discuss the effect of process parameters on the properties and the diode resistances of CNTs in single and array via, and then compare with Ta and Ti of bottom electrode of conductive performance.
We find out that multi-wall carbon nanotube(MWNT) diameter decreases with increasing pretreatment plasma power and substrate temperature; the degree of graphitization of MWNTs increases with growth plasma power and substrate temperature. Consequently, the diode resistance of MWNTs in both single and array vias decreases with increasing MWNT graphitization. However, in the same via region, the MWNT diode resistances of the array vias are lower than those of the single vias; the MWNT diode resistances on the bottom electrode of Ti are lower than those on the bottom electrode of Ta. So, at PP: 1200 W, PG: 800 W, Temp. : 650 ℃, and CH4 flow ratio: 30%, we measure the best degree of graphitization (50%) and the lowest MWNT diode resistance (60 Ω).
關鍵字(中) ★ 電阻
★ 內連線
★ 引洞結構
★ 奈米碳管
關鍵字(英) ★ interconnect
★ resistance
★ via
★ carbon nanotubes
論文目次 總 目 錄
中文摘要 ..........................................................I
英文摘要 ..........................................................II
謝誌 ..........................................................III
總目錄 ..........................................................IV
圖目錄 ..........................................................VI
表目錄 ..........................................................XIV
符號說明 ..........................................................XV
第一章 緒論 .................................................1
1-1 前言 ..........................................................1
1-2 研究動機與目的 .................................................3
第二章 奈米碳管簡介 ........................................5
2-1 奈米碳管的起源 .................................................5
2-2 奈米碳管的結構 .................................................7
2-3 奈米碳管之成長機制 ........................................11
2-4 奈米碳管之合成技術 ........................................12
2-5 奈米碳管之特性與應用 ........................................16
第三章 實驗方法與設備 ........................................22
3-1 實驗流程 .................................................22
3-2 二極體元件製作流程 ........................................24
3-3 實驗儀器簡介 .................................................29
第四章 結果與討論 .................................................34
4-1 製程參數對奈米碳管型態的影響 ...............................34
4-1-1 前處理電漿功率對奈米碳管型態的影響 ......................35
4-1-2 成長電漿功率對奈米碳管型態的影響 ......................35
4-1-3 基板溫度對奈米碳管型態的影響 ...............................36
4-1-4 甲烷氣體流量比例對奈米碳管型態的影響 ......................37
4-2 製程參數對奈米碳管石墨化程度的影響 ......................38
4-2-1 前處理電漿功率對奈米碳管石墨化程度的影響 .............38
4-2-2 成長電漿功率對奈米碳管石墨化程度的影響 .............39
4-2-3 基板溫度對奈米碳管石墨化程度的影響 ......................39
4-2-4 甲烷氣體流量比例對奈米碳管石墨化程度的影響 .............40
4-3 以奈米碳管所製作出的二極體元件其電性的探討 .............41
4-3-1 奈米碳管型態對二極體元件電性的影響 ......................41
4-3-2 奈米碳管石墨化程度對二極體元件電性的影響 .............42
4-3-3 在相同範圍面積下陣列引洞結構與單一引洞結構所成
長奈米碳管對二極體元件電性的影響 ...............................44
4-3-4 不同下電極金屬對二極體元件電性的影響 ......................46
4-4 利用等效電路來分析陣列引洞結構其電阻值 ......................47
第五章 結論 .................................................104
第六章 未來發展 .................................................105
參考文獻 ..........................................................106
個人簡歷 ..........................................................112
參考文獻 參 考 文 獻
【1】 S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354(1991)56.
【2】 S. Iijima, T.Ichihashi, Nature 363(1993)603.
【3】 D.S. Bethune, C.H. Kiang, M.S. Deveries, Nature 363(1993)605.
【4】 S. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A. M. Cassell, and H.J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties”, Science 283(1999)512.
【5】 X. Ma, E. Wang, W. Zhou, D.A. Jefferson, J. Chen, S. Deng, N. Xu, J. Yuan, “Polymerized carbon nanobells and their field-emission properties”, Appl. Phys. Lett. 75(1999)3105.
【6】 W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett. 75(1999)3129.
【7】 W. A. de Heer, A. Chatelain, D. Ugarte, “A carbon nanotube field-emission electron source”, Science 270(1995)1179.
【8】 J. Kong, N. R. Franklin,C. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai1, Science 287(2000)622.
【9】 J. Kong, M. Chapline and H. Dai, “Functionalized single walled carbon nanotubes for molecular hydrogen sensors”, Adv. Mater. 13(2001)1384.
【10】 H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384(1996)147.
【11】 S. Wong, E. Joselevich, A. Woolley, C. Cheung, C. Lieber, “Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology”, Nature 394(1998)52.
【12】 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature 386(1997)377.
【13】 H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon 39(2001)1447.
【14】 A. K. M. F. Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun, “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy 26(2001)823.
【15】 G. E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake”, Nano Letters 1(2001)531.
【16】 Z. Dehouche, L. Lafi, N. Grimard, J. Goyette, R. Chahine, “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates ”, Nanotechnology 16(2005)402.
【17】 Wei BQ, Vajtai R, Ajayan PM, “Reliability and current carrying capacity of carbon nanotube”, Appl Phys Lett 79(2001)1172.
【18】 Kim P, Shi L, Majumdar A, McEuen PL, “Thermal transport measurements of individual multiwalled nanotubes”, Phys Rev Lett 87(2001)215502.
【19】 Frank S, Poncharal P, Wang ZL, de Heer WA, “Carbon nanotube quantum resistors”, Science 280(1998)1744.
【20】 Srivastava N, Banerjee K, “Interconnect challenges for nanoscale electronic circuits”, Jom 56(2004)30.
【21】 Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, “Bottom-up approach for carbon nanotube interconnects”, Appl. Phys. Lett. 82(2003)2491.
【22】 Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Liebau M, Unger E, “Carbon nanotubes in interconnect applications”, Microelectron Eng. 64(2002)399.
【23】 Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel R, “Carbon nanotubes for microelectronics: status and future prospects”, Mater Sci Eng C—Biomim Supramol Syst 23(2003)663.
【24】 J. Guo, M. Lundstrom, S. Datta, “Performance projections for ballistic carbon nanotube field-effect transistors”, Applied Physics Letters 80(2002)3192.
【25】 S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrode”, Applied Physics Letters 80(2002)3817.
【26】 A. Jacey, J. Guo, D. B. Farmer, Q. Wang, R. G. Gordon, M. Lundstrom, H. Dai, “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics”, Nano Letters 4(2004)447.
【27】 S. Tans, A. Verschueren, C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature 393 49.
【28】 K. B. K. Teo et al., “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proc.-Circuits Devices Syst. (2004)408.
【29】 K. Tsukagoshi, N. Yoneya, S. Uryu, Y. Aoyagi, A. Kanda, Y. Ootuka, B. W. Alphenaar, “Carbon nanotube devices for nanoelectronics”, Physics B 323(2002)107.
【30】 Http://www.future-fab.com/documents.asp.
【31】 楊正杰, 奈米通訊第七章第四期
【32】 Rice University:Rick Smalley’s Group Home Page-Image Gallery
【33】 T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐J. Phys. Chem. B 104(2000)2794.
【34】 Http://endomoribu.shinshu-u.ac.jp/research/cnt/composit.html.
【35】 Http://theor.jinr.rudisordernano.html.
【36】 TH. Henning, F. Salama, “Carbon in the Universe”, Science 282(1998)2204.
【37】 成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司
【38】 R.T.K. Baker, P.S. Harries, Marcel Dekker, “Chemistry and Physics of Carbon”, New York 83(1978).
【39】 Y.S. Park, K.S. Kim, H.J. Jeong, W.S. Kim, J.M. Moon, K.H. An, D.J. Bae, Y.S. Lee,G.S. Park, Y.H. Lee, “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals 126(2002)245.
【40】 H.J. Lai, M.C.C. Lin, M.H. Yang A.K. Li, “Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”, Materials Science and Engineering C 16(2001)23.
【41】 T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, “Purification of nanotubes”, Nature 367(1994)519.
【42】 M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Saniesteban, “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett. 62(1993)202.
【43】 T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett.243(1995)49.
【44】 R. Andrewsa, D. Jacques, “Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization”, Chem. Phys. Lett. 303(1999)467.
【45】 J.H. Han, S.H. Choi, T.Y. Lee, J.B. Yoo, C.Y. Park, H.J. Kim, I.T. Han, S. Yu, W. Yi,G.S. Park, M. Yang, N.S. Lee, J. M. Kim, “Effects of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films 409(2002)126.
【46】 Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials 11(2002)59.
【47】 U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, “Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition”, Diamond and Related Materials 10(2001)1947.
【48】 W.D. Zhang, J.T.L. Thong, W.C. Tjiu, L.M. Gan, “Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters”, Diamond and Related Materials 11(2002)1638.
【49】 Http://www.nanoscience.com.
【50】 Dai HJ, Hafner JH, Rinzler AG, et al. Nature 147(1996)384.
【51】 J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, J. Tersoff, “Electrically Induced Optical Emission from a Carbon Nanotube FET”, SCIENCE 2(2003)300.
【52】 Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai1, “Nanotube Molecular Wires as Chemical Sensors”, SCIENCE (2000)287.
【53】 Http://taiwan.cnet.com.
【54】 Se-Jin Kyung et al. “Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature”, Carbon 44(2006)1530.
【55】 Crespi VH. Phys. Rev. B., “Relations between global and local topology in multiple nanotube junctions”, 58(1998)12671.
【56】 F. Wakaya, K. Katayama, K. Gamo, “Contact resistance of multiwall carbon nanotubes”, Microelectronic Engineering 67(2003)853.
【57】 M.P. Anantram, “Coupling of carbon nanotubes to metallic contacts”, Phys. Rev. B 14(2000)221.
【58】 D.J. Yang et al., “Thermal and electrical transport in multi-walled carbon nanotubes”, Physics Letters A 329(2004)207.
【59】 Http://www.sas.org/engineerByMateral.html.
【60】 L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar, “The surface energy of metal”, Surface Science 411(1998)186.
指導教授 黃豐元(Prof. F. Y. Huang) 審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明