博碩士論文 93333022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.139.107.131
姓名 林東賢(Tung-Hsien Lin)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 錫鬚生長與應力、溫度之關係
(The Relation Between Tin Whisker Growth and Stresses,Temperatures)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討銅試片鍍光澤錫後,在不同外加應力及溫度條件
下錫鬚生長之行為,並利用掃描式電子顯微鏡(SEM)觀察錫鬚之變化,以
了解外加應力及溫度與錫鬚生長之關係。實驗結果顯示,在室溫下承受
外加拉應力之試片表面發現長度較短之小結狀錫鬚,其長度比無外加應
力的試片短,主要是由於外加之拉應力抵消部份試片內部既存的壓應力
所致,但此機制無法完全避免錫鬚產生。試片在室溫中承受不同外加壓
應力,其表面均發現有較明顯的錫鬚生長,其分佈密度隨外加壓應力數
值的增加而增高,但外加壓應力的數值越高並沒有造成錫鬚長度也呈一
致性遞增的趨勢,主要是由於較高外加應力造成氧化錫表面出現較多缺
陷,這些缺陷促使更多錫鬚生成,亦導致多數錫鬚長度無法增長。在50 oC
環境中承受外加壓應力之試片表面均生成基地寬度較大之錫鬚,此類型
錫鬚之成長不僅是長度的變化,還包括基地寬度的增加,且成長期較長,
主要是由於在高溫環境中,外加應力、熱應力及錫-銅介面反應產生內部
應力促使晶粒再結晶與晶粒成長,並持續提供錫鬚成長之驅動力等機制
所致。在50 oC 環境中無外加應力之試片,其表面出現典型細長針狀錫鬚
與基地寬度較大之錫鬚共存之現象,細長針狀錫鬚長度最長為209.5 μm,
主要是由於在無外加應力條件下之試片塑性變形程度比承受外加壓應力
之試片低,導致材料再結晶程度亦隨之降低,造成部分晶粒未能完全成
長為大晶粒所致,而高溫環境中熱應力及IMC 較快之生長速率所引發之
較大壓應力分別經由成長及未成長之晶粒釋放,形成細長針狀錫鬚與基
地寬度較大之錫鬚同時存在情形。
摘要(英) The purpose of this study is to investigate the tin whisker growth behavior on bright tin-plated copper under different applied stresses at room temperature (RT) and 50 ℃. Scanning electron microscopy (SEM) was employed to observe the tin whisker growth behavior under the given testing conditions. Although tin whiskers were observed on the surfaces subjected to applied tensile stresses, they were shorter than those present on the surfaces without applied stress or with applied compressive stresses. Apparently, the applied tensile stresses could counterbalance the residual compressive stresses in the tin layer to a certain extent and reduce the driving force for tin whisker growth. However, the applied tensile stresses could not completely prevent formation of tin whisker. At RT, the observed whisker length did not consistently increase with an increase in the magnitude of the applied compressive stress. An applied compressive stress with a magnitude greater than the yield strength of tin caused a reduction in the observed whisker length but an increase in whisker density. This might be due to a greater number of surface cracks or imperfections induced by a larger applied compressive stress. Such surface defects could serve as a path for whiskers to initiate. For tin surfaces under application of compressive stresses at 50 ℃, whiskers with a wider bottom and greater length were generally observed, as compared to those formed at RT under the same applied compressive stress. A longer whisker growth period was also found for the specimens tested at 50 ℃. This might be attributed to a greater effect of recovery and recrystallization on the growth of tin whisker at 50 ℃. On the tin surface without applied stress at 50 ℃, both needle and nodule types of whiskers were observed. As no mechanical stresses were applied, the plastic deformation caused by residual compressive stresses was smaller, leading to a less extent of recrystallization. In this regard, some of the whiskers grew to become a needle shape, as compared to those present at tin surfaces with applied compressive stresses at 50 ℃.
關鍵字(中) ★ 四點彎矩
★ 溫度
★ 外加應力
★ 錫鬚生長
關鍵字(英) ★ four point bending
★ temperature
★ applied stresse
★ tin whisker growth
論文目次 表目錄------------------------------V
圖目錄-----------------------------VI
第一章 簡介-------------------------1
1-1 研究背景------------------------1
1-2 何謂錫鬚------------------------2
1-3 錫鬚的危害----------------------3
1-4 錫鬚的生長機制------------------3
1-4-1 銅與錫介面反應之效應------4
1-4-2 電鍍產生殘留應力之效應----5
1-4-3 機械外力造成之效應--------5
1-4-4 熱膨脹係數差異之效應------5
1-4-5 電遷移之效應--------------7
1-5 研究目的------------------------7
第二章 實驗方法與程序---------------9
2-1 試片製作------------------------9
2-2 四點彎矩治具製作----------------9
2-3 加熱箱製作----------------------9
2-4 應力之計算---------------------10
2-5 實驗條件與分組-----------------11
2-6 錫鬚觀察方法-------------------12
第三章 結果與討論------------------14
3-1 錫鬚的形態及成份---------------14
3-2 應力對錫鬚成長的影響-----------15
3-3 溫度對錫鬚成長的影響-----------17
第四章 結論------------------------20
參考文獻---------------------------21
Tables-----------------------------23
Figures----------------------------24
參考文獻 [1] J. S. Kadesch and J. Brusse, “The Continuing Dangers of Tin Whiskers and Attempts to Control Them with Conformal Coating,” NASA's EEE Links Newsletter, July 2001.
[2] G. T. T. Sheng, C. F. Hu, W. J. Choi, K. N. Tu, Y. Y. Bong, and L. Nguyen, “Tin Whiskers Studied by Focused Ion Beam Imaging and Transmission Electron Microscopy,” Journal of Applied Physics, Vol. 92, 2002, pp. 64-69.
[3] T. H. Chuang, “Rapid Whisker Growth on the Surface of Sn-3Ag-0.5Cu-1.0Ce Solder Joints,” Scripta Materialia, Vol. 55, 2006, pp. 983-986.
[4] N. Vo, M. Kwoka, and P. Bush, “Tin Whisker Test Standardization,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 28, 2005, pp. 3-9.
[5]“Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2006,” The Stationery Office Limited, UK, 2006.
[6] iNEMI High-Reliability Task Force, “Position Statement on RoHS5 & RoHS6 Subassembly Modules,” International Electronics Manufacturing Initiative, Herndon, VA , USA, 2006.
[7] D. W. Romm, D. C. Abbott, S. Grenney, and M. Khan, ”Whisker Evaluation of Tin-Plated Logic Component Leads,” Application Report SZZA037A, Texas Instruments Incorporated, Dallas, TX, USA, 2003.
[8] M. Dittes, P. Oberndorff, and L. Petit, “Tin Whisker Formation-Results, Test Methods and Countermeasures,” pp. 822-826 in Proceedings of the 53rd Electronic Components and Technology Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2003.
[9] JEDEC Standard JESD22A121, “Measuring Whisker Growth on Tin and Tin Alloy Surface Finishes,” JEDEC Solid State Technology Association, Arlington, VA, USA, 2005.
[10] C. Xu, Y. Zhang, C. Fan, and J. A. Abys, ” Driving Force for the Formation of Sn Whiskers: Compressive Stress-Pathways for Its Generation and Remedies for Its Elimination and Minimization,” IEEE Transactions on Electronics Packing Manufacturing, Vol. 28, 2005, pp. 31-35.
[11] S. H. Liu, C. Chen, P. C. Liu, and T. Chou, ”Tin Whisker Growth Driven by Electrical Currents,” Journal of Applied Physics, Vol. 95, 2004, pp. 7742-7747.
[12] R. Schetty, “Electrodeposited Tin Properties and Their Effect on Component Finish Reliability,” pp. 29-34 in Proceedings of the 2004 International Conference on the Business of Electronic Product Reliability and Liability, Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2004.
[13] J. H. Lau, S. H. Pan, and C. Xu, “3D Large Deformation and Nonlinear StressAnalyses of Tin Whisker Initiation and Growth on Lead-Free Components,” pp.692-697 in Proceedings of the 53rd Electronic Components and Technology
Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2003.
[14] Metals Handbook, 10th Ed., Vol. 2, ASM International, Materials Park, OH, USA, 1990, pp. 517-526.
[15] 陳文照、曾春風、游信和, 材料科學與工程導論, 高立圖書有限公司, 台北, 2005, pp. 197-205.
[16] 白蓉生, 電路板與無鉛焊接, 台灣電路板協會, 桃園, 2006, pp. 94-105.
指導教授 林志光(Chih-Kuang Jack Lin) 審核日期 2007-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明