博碩士論文 93323039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.144.47.115
姓名 丁富彬(Fu-Pin Ting)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱壓製程參數對膜電極組(MEA)性能之影響
(The effect of hot press process parameter for MEA performance)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文採用熱壓製程製備膜電極組(Membrane Electrode Ass-
embly, MEA),所得MEA先用I-V極化曲線分析該電池之性能。然而,由於MEA之壓降損失不能由極化曲線理解其理由,因此本實驗進一步配合交流頻譜(Electrochemical Impedance Spectroscopy ,EIS) 分析探討電池內部結構各組成單元接觸面之特性。
EIS結果顯示:熱壓製程之溫度、壓力、質子交換膜之厚度與Nafion溶液之負載均影響MEA的性能甚鉅。膜電極組熱壓之最佳溫度為125℃,若溫度<125℃,則質子交換膜與觸媒顆粒黏合不夠緊密;反之,若溫度>125℃,則造成觸媒顆粒被質子交換膜過度被覆而失去活性。另一方面,膜電極組熱壓之最佳壓力為50kg/cm2,若壓力<50kg/cm2,其接觸電阻太高;反之,若壓力>50kg/cm2,造成質子交換膜與觸媒顆粒間接觸壓合之效果不佳。使用厚度不同之Nafion質子交換膜組成MEA時,以最薄的50.8um(Nafion112),其阻抗最低;而以最厚的177.8um(Nafion117),其阻抗值最高,電化學阻抗的高低,主要取決於質子交換傳輸路徑的長短,與催化反應的難易而定。Nafion溶液最佳負載量為1.0mg/cm2,若負載量太少則質子傳導所需網絡不足;若負載過量則觸媒與氣體燃料接觸面積太少,無法進行催化反應。
MEA之最佳操作溫度為60℃;若溫度太低,質傳擴散作用不足,電極反應速率降低;若溫度太高,則造成觸媒迅速老化而降低電極反應速率。
MEA之最佳氣體燃料進給量(陽極/陰極化學計量比為1.5:2.0),當陰極端計量比減小時,則造成氣體燃料供給不足;而當計量比增大時,則造成氣體燃料與催化劑的接觸時間不足,兩者均不利於MEA的有效操作。
摘要(英) The paper will use hot press process to produce Membrane Electrode Assembly (MEA), and used I-V polarization curve to analyze the performance of the cell. However, the voltage loss of the MEA can not to explain from polarization curve, therefore the experiment to go a step further used Electrochemical Impedance Spectroscopy (EIS), and analyze the characteristic of contact interface of every component inside cell structure.
Result of EIS to exhibit: the temperature and pressure of hot press process, and the thickness of proton exchange membrane, and the load of Nafion solution that have more effect of MEA performance. The best hot press temperature is 125℃ in MEA, if the temperature<125℃,then proton exchange membrane and catalyst particle can not bonding enough. On the other hand if the temperature>125℃, then catalyst particle will to warp by proton exchange membrane and to lose activity. On the other hand, the best hot press pressure is 50kgf/cm2 in MEA, if the pressure<50kgf/cm2, then the contract resistance is so high. On the other hand if the pressure>50kgf/cm2, then to cause between proton exchange membrane and catalyst particle bonding result not fine. Use proton exchange membrane of different thickness to compose MEA, when 50.8um (Nafion112) that is most thin and impedance is lowest, and 177.8um (Nafion117) that is most thick and impedance is highest. The electrochemical impedance value that major to depend on proton exchange transmission path is long or short, and catalytic reaction is good or bad to decide. The best Nafion solution load quantity is 1.0mg/cm2. If the load quantity is too less, then proton exchange transmission network is not enough. If the load quantity is too much, then the contract area that between catalyst and gas fuel is too less and can not to proceed catalytic reaction.
The best operation temperature is 60℃ in MEA. If the temperature is lowest, then the effect of mass transmission and diffusion is not enough, and electrode reaction rate is to reduce. If the temperature is highest, then to cause catalyst ageing quickly, furthermore reduce electrode reaction rate.
The best gas fuel feed quantity (anode/cathode chemical stoichiometry is 1.5:2.0). When the stoichiometry is reduce in cathode that to cause gas fuel feed is not enough. When the stoichiometry is to increase that to cause the contract time of between gas fuel feed and catalyst are not enough. Both of above condition are not effective operation for MEA.
關鍵字(中) ★ 交流阻抗
★ 熱壓
★ 膜電極組
關鍵字(英) ★ Membrane Electrode Assembly (MEA)
★ hot press
★ Electrochemical Impedance Spectroscopy (EIS)
論文目次 中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
表目錄 Ⅹ
圖目錄 ⅩⅢ
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
第二章 質子交換膜燃料電池(PEMFC)之核心膜電極組(MEA) 4
2.1質子交換膜燃料電池(PEMFC)中膜電極組(MEA)之簡介與製作 4
2.1.1 質子交換膜(Proton Exchange Membrane) 4
2.1.2 觸媒層(Catalyst Layer) 6
2.1.3 氣體擴散層(Gas Diffusion Layer, GDL) 8
2.2 膜電極組(MEA)之工作原理與反應機制 9
2.3 膜電極組(MEA)製作 11
2.4 影響膜電極組(MEA)性能之決定性因素 14
第三章 質子交換膜燃料電池(PEMFC)中膜電極組(MEA)的研究文獻回顧 16
3.1 電池操作參數相關文獻 16
3.2 膜電極組(MEA)製程相關文獻 18
3.3 交流阻抗分析相關文獻 24
3.4 微觀分析相關文獻 29
第四章 燃料電池之分析與理論基礎 31
4.1 直流電極化(I-V)曲線分析 31
4.2 交流電阻抗(EIS)頻譜分析 34
第五章 實驗材料設備與檢測 38
5.1 實驗設備與實驗材料 38
5.1.1 實驗設備與分析儀器 38
5.1.2 實驗材料 41
5.2 實驗流程與參數設定 42
5.2.1 適當電池操作條件選定實驗 43
5.2.1.1 電池工作溫度選定實驗 43
5.2.1.2 氣體燃料進給流量選定實驗 43
5.2.2 適當製程參數選定實驗 46
5.2.2.1 熱壓製程參數選定實驗 46
5.2.2.2 質子交換膜厚度選定實驗 47
5.2.2.2 Nafion溶液負載量選定實驗 47
5.3 實驗方法 49
5.3.1 直流電極化(I-V)曲線分析 49
5.3.2 交流電阻抗(EIS)頻譜分析 49
第六章 結果 51
6.1 操作參數與膜電極組(MEA)性能之關係 51
6.1.1 電池工作溫度與MEA性能之關係 51
6.1.1.1 直流電極化(I-V)曲線分析 51
6.1.1.2 交流電阻抗(EIS)頻譜分析 52
6.1.2 氣體燃料進給流量與MEA性能之關係 54
6.1.2.1直流電極化(I-V)曲線分析 54
6.1.2.2交流電阻抗(EIS)頻譜分析 55
6.2 製程參數與膜電極組(MEA)性能之關係 56
6.2.1 膜電極組(MEA)之熱壓製程研究 56
6.2.1.1 直流電極化(I-V)曲線分析 56
6.2.1.2 交流電阻抗(EIS)頻譜分析 58
6.2.2 質子交換膜厚度與MEA性能之關係 62
6.2.2.1直流電極化(I-V)曲線分析 62
6.2.2.2交流電阻抗(EIS)頻譜分析 62
6.2.3 Nafion溶液負載量與MEA性能之關係 64
6.2.3.1直流電極化(I-V)曲線分析 64
6.2.3.2交流電阻抗(EIS)頻譜分析 65
6.3 微結構分析之結果 67
第七章 討論 70
7.1質子交換膜燃料電池(PEMFC)最佳操作參數之選取 70
7.1.1 電池最佳工作之溫度 70
7.1.2 氣體燃料最佳進給流量 72
7.2 最佳膜電極組(MEA)製程參數之求得 74
7.2.1 最佳膜電極組(MEA)熱壓參數 74
7.2.1.1 熱壓溫度之影響 74
7.2.1.2 熱壓壓力之影響 79
7.2.2 最佳質子交換膜厚度 83
7.2.3 最佳Nafion溶液負載量 86
第八章 結論與未來展望 90
8.1 結論 90
8.2 未來展望 91
第九章 參考文獻 93
參考文獻 [Antolini] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, Journal of Power Sources., “Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC” Vol. 77, p.136–142 (1999)
[Bevers]
D. Bevers, N. Wagner, M Von Bradke, International Journal of Hydrogen “Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures” Vol.23, p.57-63 (1998)
[Blom] D. A. Blom, J. R. Dunlap, T. A. Nolan, L. F. Allarda, Journal of The Electrochemical Society., “Preparation of Cross-Sectional Samples of Proton Exchange Mem-
brane Fuel Cells by Ultramicrotomy for TEM” Vol. 150(4), p.414-418 (2003)
[Bockris] John O’M. Bockris, Amulya K. N. Reddy “MODERN ELECTROCHEMISTY SECOND EDITION” VOLUME1, p.569-571 (1998)
[Bard] A. J. Bard, L. R. Faulkner, “ELECTROCHEMICAL METHODS Fundamentals and Applications-SECOND EDITION” p.368-377 (2001)
[Ciureanu 1] M. Ciureanu, Hong Wang, Journal of The Electrochemical Society., “Electrochemical Impedance Study of Electrode-Membrane Assemblies in PEM Fuel Cells” Vol.146(11), p.4031–4040 (1999)
[Ciureanu 2] M. Ciureanu, S.D. Mikhailenko, S. Kaliaguine, Catalysis Today., “PEM fuel cells as membrane reactors: kinetic analysisby impedance spectroscopy” Vol.82 p.195–206 (2003)
[Daud] W. R.W. Daud, A. B. Mohamad, A. A. H. Kadhum, R. Chebbi, S. E. Iyuke, Energy Conversion and Management., “Performance optimisation of PEM fuel cell during MEA fabrication” No. 45, p.3239–3249 (2004)
[de Almeida] S. H. de Almeida, Y. Kawano, Journal of Thermal Analysis and Calorimetry., “THERMAL BEHAVIOR OF NAFION MEMBRANES” Vol. 58, p.569-577 (1999)
[Easton] E. B. Easton, P. G. Pickup, Electrochimica Acta “An electrochemical impedance spectroscopy study of fuel cell electrodes” Vol.50, p.2469–2474 (2005)
[E-TEK] http://www.etek-inc.com/index.php
[Fedkiw] P. S. Fedkiw, W. H. Her, Journal of The Electrochemical Society., “An Impregnation-Reduction Method to Prepare Electrodes on Nafion SPE” Vol. 136(3), p.899-900 (1989)
[Fletcher] S. Fletcher, J. Electroanal Chem., “An Electrical Model Circuit that Reproduces the Behaviour of Conducting Polymer Electrodes in Electrolyte Solutions ” Vol.337, p.127-145 (1992)
[Fildes] J. M. Fildes, P. Chen, and X. Zhan, “Application of Electrochemical Impedance Spectroscopy, Color Visible Imaging, and Infrared Imaging For Non-Destructive Evaluation of Anti-Corrosion Coatings” p.4
[Freire] T. J.P. Freire, E. R. Gonzalez, Journal of Electroanalytical Chemistry “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells” Vol.503, p.57–68 (2001)
[Gulzow] E. Gulzow, M. Schulze, N. Wagner, T. Kaz, R. Reissner, G. Steinhilber, A. Schneider, Journal of Power Sources., “Dry layer preparation and characterisation of polymer electrolyte fuel cell components” Vol.86, p.352–362 (2000)
[Haile 1] S. M. Haile, Acta Materialia., “Fuel cell materials and components” Vol.51, p.5982-5983 (2003)
[Haile 2] S. M. Haile, Acta Materialia., “Fuel cell materials and components” Vol.51, p.5983-5986 (2003)
[Hiroyuki] Hiroyuki INOUE, Hirofumi DAIGUJI, Eiji HIHARA, JSME International Journal., “The Structure of Catalyst Layers and Cell Performance in Proton Exchange Membrane Fuel Cells” Vol.47, p.228-234 No.2 (2004)
[Huang 1] 黃鎮江, “燃料電池” 全華科技圖書股份有限公司, p.4-4~4-24 (2005)
[Huang 2] 黃鎮江, “燃料電池” 全華科技圖書股份有限公司, p.2-4~2-5 (2005)
[Kim] J. D. Kim, Y. I. Park, K. Kobayashi, M.Nagai, M. Kunimatsu, Solid State Ionics., “Characterization of CO tolerance of PEMFC by ac impedance spectroscopy” Vol.140, p.313-325 (2001)
[Kordesch 1] K. Kordesch, G. Simader “Fuel Cells and Their Application” p.45-48 (1996)
[Kordesch 2] K. Kordesch, G. Simader “Fuel Cells and Their Application” p.75-76 (1996)
[Lai] C. M. Lai, C. P. Hwang, F. C. Wu, K. L. Hsueh, L. D. Tsai, Alex. Peng and J.C. Lin, 2005, “Characterization of Failure MEA for DMFC by Electrochemical Impedance Spectroscopy” Accepted for publication in 208th Meeting of The Electrochemical Society, Los Angeles, U.S.A, October 16-21, 2005.
[Lee 1] S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Khob and T. H. Lee, Electrochimica Acta., “Effects of Nafion impregnation on performances” Vol. 43, No. 24, p.3693-3701 (1998)
[Lee 2] J.H. Lee, T.R. Lalk, , A.J. Appleby, Journal of Power Sources., “Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks” Vol.70, p.261 (1998)
[Liang] Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, Journal of Membrane Science., “FT-IR study of the microstructure of Nafion® membrane” Vol.233 p.39-44 (2004)
[Lin] G. Lin, T. V. Nguyenz, Journal of The Electrochemical Society., “Effect of Thickness and Hydrophobic Polymer Content of the Gas Diffusion Layer on Electrode Flooding Level in a PEMFC” Vol.152(10), A1942-A1948 (2005)
[Litster] S. Litster, G. McLean, Journal of Power Sources., “Review PEM fuel cell electrodes” Vol.130, p.61-p.76 (2004)
[Mehta 1] V. Mehta, J. Smith Cooper, Journal of Power Sources., “Review and analysis of PEM fuel cell design and manufacturing” vol.114 p.39-43 (2003)
[Mehta 2] V. Mehta, J. Smith Cooper, Journal of Power Sources., “Review and analysis of PEM fuel cell design and manufacturing” vol.114 p.42-43 (2003)
[Mohtadi] R. Mohtadi, W.-K. Lee, J.W. Van Zee, Applied Catalysis B: Environmental., “The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC” Vol.56, p.37-42 (2005)
[Passalacqua] E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Electrochimica Acta., “Nafion content in the catalyst layer of polymer electrolyte fuel cells effect on structure and performance” Vol.46, p.799–805 (2001)
[Poltarzewski] Z. Poltarzewski, P. Staiti, V. Alderucci, W. Wieczorek, N. Giordano, Journal of The Electrochemical Society., “Nafion Distribution in Gas Diffusion Elecrodes for Solid- Polymer-Electrolyte-Fuel-Cell Applications” Vol.139, p.761-765 (1992)
[Randles] J. E. B. Randles, “Disc Faraday Soc.” , Vol.1, p.11 (1947)
[Sasikumar ] G. Sasikumar, J.W. Ihm, H. Ryu, Electrochimica Acta., “Optimum Nafion content in PEM fuel cell electrodes” Vol. 50, p.601–605 (2004)
[Shin] S. J. Shin, J. K. Lee, H. Y. Ha, S. A. Hong, H. S. Chun, I. H. Oh, Journal of Power Sources., “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells” Vol.106, p.146-152 (2002)
[Sluyters 1] J. H. Sluyters, M. Sluyter-Rehbach, Marcel Dekker, New York “Electroanalytical Chemistry” Vol.4 (1970)
[Sluyters 2] J. H. Sluyters, M. Sluyter-Rehbach, “Comprehensive Treatise of Electrochemistry” Plenum, New York, Vol.9, p.177 (1984)
[Song1] J. M. Song, S.Y. Cha, W.M. Lee, Journal of Power Sources., “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method” Vol.94, p.78–84 (2001)
[Song2] Y. Song, J. M. Fenton, H. R. Kunz, L. J. Bonville, M. V. Williams, Journal of The Electrochemical Society., “High-Performance PEMFCs at Elevated Temperatures Using Nafion 112 Membranes ” Vol.152(3), A539-A544 (2005)
[Sopian] K. Sopian, W. R.W. Daud, Renewable Energy., “Challenges and future developments in proton exchange membrane fuel cells” vol31, p.719-p.722 (2006)
[Sridhar] P. Sridhar, R. Perumal, N. Rajalakshmi, M. Raja, K. S. Dhathathreyan, Journal of Power Sources., “Humidification studies on polymer electrolyte membrane fuel cell” Vol.101 p.72-78 (2001)
[Srinivasan] S. Srinivasan, E. A. Ticianelli, C. R. Derouin, A. Redondo, Journal of Power Sources., “Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes” Vol.22, p.359-375 (1988)
[Suryanarayana] C. Suryanarayana, M.Grant Norton “X-Ray Diffraction A Practical Approach” p.212-213 (1998)
[Tait] W. S. Tait, “AN INTRODUCTION TO ELECTROCHEMICAL CORROSION TESTING FOR PRACTICING ENGINEERS AND SCIENTISTS” p.79-93 (1994)
[Thomas] Thomas A, Zawodzinski, John Davey, Judith Valerio, Shimshon Gottesfeld, Electrochimica Acta., “The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes” Vol.40, No3, p.297 (1995)
[Ticianelli] E. A. Ticianelli, C. R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc., “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells” Vol.135, No.9, p.2209-2214 (1988)
[Wagner] N. Wagner, Journal of Applied Electrochemistry “Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy” Vol.32, p.859-863 (2002)
[Warburg] E. Warburg, “Drud. Ann. der Physik” , Vol.6, p.125 (1901)
[Wilson] M. S. Wilson, F. H. Garzon, K. E. Sickafus, S. Gottesfeld Journal of The Electrochemical Society., “Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells” Vol.140, p.2872-2877 (1993)
[ Xue] T. Xue, J. S. Trent, K. Osseo-Asare, Journal of Mem-
brane Science., “Characterization of Nafion membrane by Transmission Electron Microscopy” Vol. 45, p.261-271 (1989)
[YI 1] 衣寶廉, “燃料電池-原理與應用” 五南出版社, p.162-163 (2005)
[YI 2] 衣寶廉, “燃料電池-原理與應用” 五南出版社, p.162-242 (2005)
[Yu] J. R. Yu, B. L. Yi, M. Han, K. W. Bi, X. Z. Du, P. W. Ming, Dianyuan Jishu/Chinese Journal of Power Sources., “Influence of Nafion membrane thickness on the performance of proton exchange membrane fuel cells” Vol. 25, No. 6, p.384-386 (2001)
指導教授 林景崎(Jing-Chie Lin) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明