博碩士論文 93323067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.189.145.115
姓名 劉貴助(Kuei-Chu Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 細胞在注流式生物反應器之生長研究
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 週期式圓錐平板裝置之流場分析★ 設計與製作圓錐平板型生物反應器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 組織工程是嘗試在活體外培養出組織或是器官,再移植到活體內以解決異體移植時的排斥現象,並且縮短等待捐贈者器官或組織的時間,減小在等待時間中死亡的風險。
早期學者使用靜態單層培養細胞,發現細胞的生長與型態並不好,且細胞無法堆疊成三維的構造,所以使用生物相容性材料製成的三維支架,讓細胞可以堆疊成立體構造,但是發生養份和氧氣傳輸受到限制,使得支架內的細胞無法生長,導致細胞不均勻的分佈,許多學者發展出各種不同形式的動態生物反應器,取代原本使用靜態培養的方式來培養細胞,將養份和氧氣以流體動力學的方式傳輸到支架內部,使細胞分佈較為均勻。
本文利用注流式生物反應器來培養軟骨細胞,設定3種不同流速(11 μm/s、76 μm/s、252 μm/s)培養軟骨細胞以及變換培養液流動方向,可以使細胞在三維的支架中均勻的生長,並可以讓細胞數快速的增加,其中3天培養以培養液雙向流動流速252 μm/s的培養出細胞數最多和細胞分佈最好,9天培養液單向流動培養也是以流速252 μm/s的培養結果最佳,這將有助於縮短生成軟骨成骨的時間。
摘要(英) Tissue engineers have been trying to grow tissue implants in vitro. Because cells grown in monolayer culture cannot form three-dimensional tissues, and the cells in culture may dedifferentiate, becoming different in phenotypes from native cells, researchers have designed three- dimensional porous scaffolds, on which cells can be seeded, adhere and proliferate into three-dimensional tissues.
Nutrient delivery to cells throughout the cell-seeded scaffolds grown in static culture must occurs by diffusion. As a result, cells on the scaffold periphery are typically viable while cells within the constructs may be less active or even necrotic. To overcome this disadvantage, tissue culture systems that use fluid flow to improve nutrient transports are designed to enhance the cell growth in vitro.
This thesis is to design a perfusion bioreactor for chondrocyte culture in vitro. Culture media are forced to flow by a roller pump through the culture chambers, within which cell-scaffold constructs are placed. Cells are grown with unidirectional and reversal flow respectively at three different perfusion rates (11 μm/s, 76 μm/s and 252 μm/s). Results show perfusion with reversal flow at the veloctiy 252μm/s has the best result for three days of culture. In nine days of culture, unidirectional medium flow at 252 μm/s is better than the other two culture perfusion rates. This study reveals that perfusion can enhance cellular proliferation and improve cartilage forming with carefully controlled perfusion rates.
關鍵字(中) ★ 生物反應器 關鍵字(英) ★ perfusion bioreactor
論文目次 中文摘要
英文摘要
誌謝
目錄 ………………………………………………………………..Ⅰ
圖目錄 ……………………………………………………………..Ⅳ
第一章 緒論 ………………………………………………………..1
1.1 文獻回顧 …………………………………………………...3
1.2 研究動機 …………………………………………………….6
第二章 生物反應器之設計 ………………………………………..8
2.1 設計概念 …………………………………………………….8
2.2 培養室設計 ………………………………………………..10
2.2.1 流場分析 ……………………………………………...10
2.2.2 流速設定方法 ………………………………………….11
2.3 流體通過支架之壓力差測量………………………….....13
2.4 支架滲透度測量 …………………………………………..14
第三章 實驗方法 ………………………………………………….22
3.1 支架材料與尺寸 …………………………………………..22
3.2 細胞來源 …………………………………………………..22
3.3 支架消毒與細胞種植 ……………………………………..23
3.4 利用生物反應器培養 ……………………………………..24
3.5 結果分析 …………………………………………………..25
3.5.1 以DNA含量推估細胞數 ……………………………....25
3.5.2 GFP病毒染色 …………………………………………..27
3.5.3 拍攝LV-SEM …………………………………………….28
3.5.4 統計分析 ……………………………………………….39
第四章 結果與討論 ……………………………………………….34
4.1 培養3天結果 ……………………………………………...34
4.1.1 靜態培養 ……………………………………………….34
4.1.2 動態培養 ……………………………………………….36
4.2 培養9天結果 ……………………………………………...39
4.2.1 靜態培養 ……………………………………………….40
4.2.2 動態培養 ……………………………………………….40
第五章 結論 ...............…………………………………..58
參考文獻 …………………………………………………………..61
附錄A 實驗藥品及儀器…………………………………………...65
附錄B 細胞數與DNA關係式…………………………………......68
附錄C 統計方法…………………………………………………...69
參考文獻 林惠玲, 陳正倉, 2000. 應用統計學. 雙葉書廊.
陳誌遠, 2005, 軟骨細胞在組織工程支架之培養研究, 國立中央大學機械工程研究所碩士論文.
Alleborn, N., Nandakumar, K., Raszillier, H., Durst, F., 1997. Further contributions on the two-dimensiobal flow in a sudden expansion. J. Fluid Mech. 330, 169-188.
Bancroft, G.N. et al., 2002. Fluid flow increases mineralized matrix deposition in 3D perfusion manner. Proc. Natl. Sci. U.S.A. 99, 12600-12605.
Bisceglie V., 1933. Uber die antineoplastische immunitat: heterologe Einpflanzung von Tumoren in Huhner-embryonen. Ztschr, Krebsforsch, 40: 122-140.
Buckwalter, J.A., Mankin, H.J., 1997.Articular cartilage. Part Ⅰ:Tissue design and chondrocyte-matrix interaction. J Bone Joint Surg 79A, 600-611.
Carver Scott E., Heath Carole A, 1999. Semi-comtinuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue engineering vol.5, number 1.
Cioffi Margherita, Boschetti Federica, Raimondi Manuela Teresa, Dubini Gabriele, 2005. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineering constructs: A Micro-CT based model. Biotechnology and Bioengineering, v 93, n 3, Feb 20, 2006, p 500-510.
David P. Clark, Lonnie D. Russell, 2005. Molecular biology-made sample and fun. Thire edition, Cache River Press, 2005.
Davisson, T. et al., 2002. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8, 807-816.
Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C., Langer, R.,1994b. Kinetics of chondrocyte growth in cell-polumer implants. Biotechnology and Bioengineering 43, 597-604.
Glucksmann, A., 1939. Studies on bone mechanics in vitro: Ⅱ, The role of tension and pressure in chondrogenesis. Anatomical Record 73, 39-56.
Goldstein, A.S., Juarez, T.M., Helmke, C.D., Gustin, M.C., Mikos, A.G., 2001. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22, 1279-1288.
Griffith, L.G., Naughton, G.,2002 Tissue engineering – current challenges and expanding opportunities. Seience 295, 1009-1014.
Kim Young-Jo, Robert L.Y. Sah, Doong Joe-Yuan H., Grodzinsky Alan J., 1988. Fluorometeric assay of DNA in cartilage explants using Hoechst 33258. Analytical Biochemistry 174, 168-176.
Langer, R. and Vacanti, J.P., 1993. Tissue engineering. Science 260, 920-926.
LeBaron, R.G. and Athanasiou, K.A., 2000. Ex vivo synthesis of articular cartilage. Biomaterials 21, 2575-2587.
Mahmoudifar Nastaran, Doran, Pauline, M., 2005. Tissue engineering of human cartilage in bioreactor using single and composite cell-seeded scaffolds. Biotechnology and Bioengineering, v 91, n 3, Aug 5, 2005, p 338-355.
Mizuno Shuichi, Tateishi Tetsuy, Ushida Takashi, Glowacki Julie, 2002. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. Journal of cellular physiology 193: 319-327.
Pazzano, D. et al., 2000. Comparison of chondrogensis in static and perfusion bioreactor culture. Biotechnol. Prog. 16, 893-896.
Ratcliffe, A. and Niklason, L.E., 2002. Bioreactors and bioprocessing for tissue engineering . Acad. Sci., 961, 210-215.
Robert Langer . Tissue engineering. Molecular Therapy Vol. 1, No. 1, January 2000.
Rodan, G.A., Bourret, L.A., Harvey, A., Mensi, T., 1975a. 3’, 5’-cyclic AMP and 3’, 5’-cyclic GMP mediators of the mechanical effects on bone remodeling. Science 189, 467-469.
Rodan, G.A.,Mensi, T., Harvey, A., 1975b. A quantitative method for application of compressive forces to bone in tissue culture. Calcified Tissue Research 18, 125-131.
Sah, R.L., Kim, Y.J., Doong, J.Y., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D., 1989. Biosynthetic response of cartilage explants to compression. J Orthop Res., 1989; 7: 619-636.
Sutherland, R.M. et al., 1986. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 46, 5320-5329.
Vassilios, I. Skiavitsas, Gregory, N. Bancroft, Antonios, G. Mikos, 2001. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and rotating wall vessel bioreactor. Journal of Biomedical Materials Research, v 62, n 1, 2002, p 136-148.
Vunjak-Novakovic, G. et al., 1996. Effect of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42, 850-860.
Vunjak-Novakovic, G. et al.,1998. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193-202.
Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A.J., Langer, R., Freed, L.E., 1999. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop Res., 1999; 17: 130-138.
Yan Yongnian, Xiong Zhuo, Hu Yunyu, Wang Shenguo, Zhang Renji, Zhang Chao, 2003. Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Materials Letters 57 (2003), 2623– 2628.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2006-11-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明