博碩士論文 93323069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.191.235.210
姓名 黃逸芳(E-Fang Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氫燃燒器與低氮氧化物燃燒器實作研究
(Experimental Study of Hydrogen and Low-NOx burners)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實作設計一氫燃燒器,可安全處理燃料電池之陽極尾(氫)氣。我們先使用貧油甲烷預混燃氣,來測試預混噴流燃燒器之性能,以找出燃燒器最佳操作條件,再進行純氫和空氣預混紊流燃燒實驗。在燃燒器噴嘴上游處,設置一弱噴流漩渦產生器(weak jet-swirl generator),由四支20o向上斜角設計之切邊小噴嘴所構成。可在原燃燒器出口下游處,形成一均勻擴張流場(diverging flow field)。除了可達到穩焰效果外,並將原本生燈拋物線狀之火焰拉伸成一底部平坦之碗狀火焰,因碗狀預混火焰可穩定於其底部之弱噴流漩渦擴張流場,是故此碗狀火焰不易被吹熄或產生回火。實驗探討不同空孔板固體率(solidity ratio, SR = 36%和64%)、噴嘴直徑(Dj = 15 mm和25 mm)、噴嘴長度(Lj = 1~3 Dj)、出口環邊斜角之有無、漩渦參數(swirl number, S ≡方位角方向與軸向之角動量流率比)等重要參數,對燃燒器穩定操作範圍(避免吹熄或回火)之影響,並量測不同燃料熱供給(thermal input)對廢氣排放的影響。使用高速(5000 張/秒)雷射斷層攝影術,擷取碗狀預混漩渦噴流火焰之動態時序資料,並統計平均其中等時序間隔之1000張瞬時二值化後之碗狀紊焰面,以獲得火焰之平均傳遞變數(mean reaction variable, ),其中c = 0為未燃反應物而c = 1為已 燃之生成物。運用高速質點影像測速技術,量測弱漩渦噴流場之連續瞬時速度分佈,以獲得相對應之全場均方根紊流強度(u’)與平均速度( )資訊,進而評估在不同u’值之火焰紊流燃燒速度(turbulent burning velocities, ST)。結果顯示,SR值會影響u’,即u’會隨SR增加而增加,以SR = 64 %可產生u’ ≈ 0.2 為最佳。當Dj = 25 mm時,使用Lj = 2Dj加上出口環邊45o斜角(tapered rim)的噴嘴,有最佳之穩定燃燒範圍,且在當量比? = 0.9和噴嘴出口流量Qj = 53 ~ 75 L/min時,[NOx]會隨Qj增加而略為增加,但均小於13 ppm(以15% O2為基準)。有關氫燃燒方面,目前可安全處理? = 0.3 ~ 0.6之大流量氫氣(Qf = 10 ~ 20 L/min),在此範圍並無量測到任何NOx。有關ST量測方面,採用類似Bédat & Cheng (1995)的分析方法,選取 = 0.05位置估算ST與u’值,發現此估算方法所得之ST結果有甚大的誤差及不確定性,因為ST深受所選位置及紊焰震盪之影響,有高達1.7倍的誤差。是故,此弱漩渦燃燒器被證實具有極低[NOx]排放之優點,但若將其運用於估算ST值,則必須小心看待所得的結果。
摘要(英) This thesis studies experimentally to design a hydrogen burner that can be used in burning the anodic offgas (H2) ejected from the fuel cell system. We first use lean premixed methane/air mixtures as a fuel to test the performance of the round burner and to find its optimum operation conditions. Thus, pure H2 premixed turbulent combustion experiments can be safely conducted. Four tangential small jets inclined at 20o are equally positioned around the bottom of the nozzle of the burner for generating weak jet-swirl flow field. So a diverging flow field in the downstream of the burner’s nozzle can be formed. Such diverging flow field not only can stretch the original parabolic Bunsen flame(without swirl) to the bowl-like flat flame but also it can stabilize the flame front. Focuses are on some the effects that may influence the limit of the stable operation (flashback and blowoff limits), including solidity ratio (SR = 36% and 64%) of perforated plates, the nozzle diameter (Dj = 15 mm and 25 mm), nozzle length (Lj = 1~3 Dj), the exit rim with 45o tapered or without, and the swirl number (S ≡ the ratio of the azimuthal to the axial momentum flux). Emissions from different thermal inputs are also measured. The bowl like turbulent flame front images obtained via the high-speed (5000 frames/s) laser tomography are processed and averaged to extract the mean reaction variable ( ), where c = 0 and c = 1 are reactants and products, respectively. Furthermore, we apply high-speed particle image velocimetry to measure the time evolution of corresponding instantaneous velocity fields, so that we can obtain root-mean-square turbulent intensities (u’) and mean velocities () of the whole flow field and thus turbulent burning velocities (ST) as a function of u’ may be estimated. Results show that SR affect values of u’ for which u’ increases with increasing SR. The optimal stable combustion range is found when a nozzle with Dj = 25 mm, Lj = 50 mm hvaing 45o tapered rim is used. At ? = 0.9, emissions of [NOx] are found to be very small, all smaller than 13 ppm (corrected to 15% O2). The higher the mean volume flow rate of the nozzle (Qj) ranging from 53 to 75 L/min, the more [NOx] emissions from 2 ppm to 13 ppm. Concerning the hydrogen combustion, we have tested and found the flashback and the blow off limits of the burner when it is operated at ? = 0.3 ~ 0.6 corresponding to H2 fuel flow rate Qf = 10 ~ 20 L/min; no measurable [NOx] emissions are found. About ST measurements, we apply the method proposed by Bédat & Cheng (1995) by choosing = 0.05 for the estimate of values ST and u’. We found that this method in estimating ST has great errors and uncertainties. Finally, it is concluded that this weak-swirl lean premixed jet burner has the advantage of very low [NOx] emissions, but it’s estimated ST data need to view with great cautions.
關鍵字(中) ★ 紊流燃燒速度
★ 氫燃燒器
★ 低氮氧化物
★ 漩渦火焰
關鍵字(英) ★ Hydrogen burner
★ swirl flame
★ low-NOx
★ turbulent burning velocities
論文目次 摘 要 I
英文摘要 II
誌謝 IV
圖表目錄 VIII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 3
1.3 解決方法 3
1.4 論文架構 4
第二章 文獻回顧 6
2.1 預混燃燒器設計 6
2.2 預混紊流燃燒簡介 6
2.3 漩渦火焰之原理 8
2.3.2 漩渦流產生方法 9
2.3.3 漩渦火焰及燃燒器 10
2.4 氫燃燒器 12
2.5 污染物生成 13
第三章 實驗方法 19
3.1 氫燃燒器與低氮氧化物燃燒器設計 19
3.2 氣體供給與控制系統 20
3.3 雷射斷層攝影術(Laser tomography) 20
3.4 高速質點影像測速技術(Particle image velocimetry) 22
3.5 紊流燃燒速度之量測及分析 23
3.6 廢氣分析及濃度校正 25
3.7 實驗流程 26
第四章 實驗結果與討論 32
4.1 漩渦流場量測分析 32
4.1.1 漩渦冷流場特性 32
4.1.2 漩渦熱流場特性 32
4.2 低氮氧化物燃燒器性能測試 33
4.2.1 燃燒器吹熄(blowoff)/回火(flashback)範圍 33
4.2.2 燃燒器廢氣量測 36
4.3 氫燃燒器性能量測 39
4.3.1 燃燒器吹熄極限測試 39
4.3.2 燃燒器廢氣量測 40
4.4 預混紊流燃燒速度量測 40
4.4.1 不同分析位置對決定紊流燃燒速度的影響 40
4.4.2 紊流燃燒速度量測誤差評估 41
第五章 結論與未來工作 68
5.1 漩渦燃燒器性能測試 68
5.2 紊流燃燒速度量測 69
5.3 未來工作 70
參考文獻 71
參考文獻 Bédat, B. & Cheng, R. K. 1995 Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 486-494.
Bowman, C. T. 1992 Control of combustion-generated nitrogen oxide emission: technology driven by regulation. Proc. Combust. Inst. 24 859-878.
Bradley, D. 1992 How Fast Can We Burn? Proc. Combust. Inst. 24, 247-262.
Carrette, L., Friedrich, K. & Stimming, U. 2001 Fuel cells–fundamentals and applications. Fuel Cells 1, 5-37.
Chang, N. W., Shy, S. S., Yang, S. I. & Yang, T. S. 2001 Spatial resolved flamelet statistics for reaction rate modeling using premixed methane-air flames in a near-homogeneous turbulence. Combust. Flame 127, 1880-1894.
Chen, C. K., Lau., K. S., Chin, W. K. & Cheng, R. K. 1992 Freely propagation open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511-518.
Cheng, R. K. 1995 Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1-14.
Cheng, R. K., Fable, S. A., Schmidt, D., Arellano, L. & Smith, K. O. 2001 Development of a low swirl injector concept for gas turbines. Proc. of International Joint Power Conference, New Orleans, Louisiana, USA, June 4-7.
Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. & Loftus, P. 2000 Scaling and development of low-swirl burners for low emission furnaces and boilers. Proc. Combust. Inst. 28, 1305–1313.
Cho, P., Law, C. K., Hertzbeqrg, J. H. & Cheng, R. K. 1986 Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493-1499.
Claypole, T. C. & Syred, N. 1980 The effect of swirl burner aerodynamics on NOx formation. Proc. Combust. Inst. 18, 81-89.
Drell, I. L. & Belles, F. E. 1957 Survey of hydrogen combustion properties. NACA Research Memorandum Report 1383.
Drift, A. V. D., Yjeng, S. L., Beckers, G. J. J. & Beesteheerde, J. 1996 Low-NOx hydrogen burner. Int. J. Hydrogen Energ. 21, No. 6, 445-449.
Energy Information Administration 2004 International Energy Outlook. Rep. No. DOE/EIA-0484 (http://www.eia.doe.gov/oiaf/ieo).
Friedman, R. 1949 The quenching of laminar oxyhydrogen flames by solid surfaces. Third Symposium on Combustion and Flame and Explosion Phenomena. 110-120.
Gupta, A.K., Lilley, D.G. & Syred, N. 1984 Swirl Flows. Abacus Press, Tunbridge Wells, England.
Heinzel, A., Roes, J. & Brandt, H. 2005 Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas. J. Power Sources 145, 312-318.
IDATECH Co., Animation of IdaTech's fuel cell processor. http://www.idatech.com/technology/fuel_proc_anim.html.
Ishizuka, S. 1984 On the behavior of premixed flames in a rotating flow field: establishment of tubular flames. Proc. Combust. Inst. 20, 287-294.
Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. & Cheng, R. K. 2005 A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30, 2867-2874.
Law, C. K., Zhu, D. L. & Yu, G. 1986 Propagation and extinction of stretched premixed flames. Proc. Combust. Inst. 21, 1419-1426.
Mathiak, J., Heinzel, A., Roes, J., Kalk, T., Kraus, H. & Brandt, H. 2004 Coupling of a 2.5 kW steam reformer with a 1 kW PEM fuel cell. J. Power Sources 131, 112-119.
Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. & Cheng, R. K. 2000 Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359-366.
Shepherd, I. G. & Cheng, R. K. 2001 The burning rate of premixed flames in moderate and intense turbulence. Combust. Flame 127, 2066-2075.
Shy, S. S., Lee, E. I., Chang, N. W. & Yang, S. I. 2000a Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner. Proc. Combust. Inst. 28, 383-390.
Shy, S. S., Lin, W. J. & Peng, K. Z. 2000b High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner. Proc. Combust. Inst. 28, 561-568.
Shy, S. S., Lin, W. J. & Wei, J. C. 2000c An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. (London) A 456, 1997-2019.
Syred, N. & Beer, J. M. 1974 Combustion in swirling flows: a review. Combust. Flame 23, 143-201.
Vagelopoulos, C. M., Egolfopoulos, F. N. & Law, C. K. 1994 Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Proc. Combust. Inst. 25, 1341-1347.
Veziroglu, T. N. 2000 Quarter century of hydrogen movement 1974-2000. Int. J. Hydrogen Energ. 25, 1143-1150.
Yang, T. S., Shy, S. S. & Chyou, Y. P. 2005 Spatiotemporal intermittency measurements in a gas-phase near-isotropic turbulence using high-speed DPIV and wavelet analysis. J. Mech. 21, 157-169.
Yegian, D. T. & Cheng, R. K. 1998 Development of lean premixed low-swirl burner for low NOx practical application. Combust. Sci. Tech. 139, 207-227.
Yetter, R. A., Glassman, I. & Gabler, H. C. 2000 Asymmetric whirl combustion: a new low NOx approach. Proc. Combust. Inst. 28, 1265-1272.
日本富士電池,燃料電池發電系統。http://www.fesys.co.jp/sougou/seihin/p27/pdf/K106b.pdf
尹偉光 1996 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展。 碩士論文,國立中央大學機械工程研究所。
李國源 2002 停滯流燃氣噴注漩渦燃燒器之流場與火焰研究。 碩士論文,國立成功大學航太與太空工程研究所。
林文基 1999 甲烷與丙烷預混紊流燃燒速度的量測。 碩士論文,國立中央大學機械工程研究所。
林孟良 1998 氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場。 碩士論文,國立中央大學機械工程研究所。
彭光榮 2000 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅。 碩士論文,國立中央大學機械工程研究所。
魏建樟 1999 應用雷射斷層攝影術探討預混紊焰傳播。 碩士論文,國立中央大學機械工程研究所。
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2006-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明