博碩士論文 93323106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.129.247.250
姓名 廖偉鈞(Wei-Chun Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 無網格局部皮得洛夫葛勒金法
(Meshless Local Petrov-Galerkin Method)
相關論文
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 腰椎人工椎間盤之運動軌跡分析★ 骨釘骨板鎖固機構之冷焊現象
★ 人工牙根與骨骼介面之生物力學研究★ 熱交換器之熱換管及端板擴管殘留應力分析
★ 耦合有限元素法與邊界積分式於三維彈性力學的應用★ 邊界積分式於剛體聲場散射問題的應用
★ 新型輪椅座墊之設計與有限元分析★ 耦合有限元素法與邊界積分式於隔音牆效能之分析
★ 有限元素法與邊界積分式於流固互制問題的應用★ 人體耳道之有限元素與邊界元素分析
★ 奇異項重建法在二維聲場邊界元素分析之應用★ 波源疊加法在二維聲場之分析
★ 三維心電圖與病症自動判別系統之研究★ 無網格數值分析法應用於股骨頭之生物力學
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本文主要是在介紹無網格局部皮得洛夫葛勒金法(簡稱MLPG)分析彈性靜力問題,MLPG是利用變動最小平方法(簡稱MLS)來建立形狀函數,MLPG有著需要引入必要邊界條件的問題,根據原本由Atluri等人所提出的MLPG是利用懲罰法來引入必要邊界條件。MLPG是一完全無需有限元素建立的無網格法,也不用設置基底網格。MLPG之加權殘值定理積分式是侷限在一節點之局部的規則形狀區域(一般二維為:矩型、圓形,三維為:立方體、球型)以及邊界中求得。MLPG是較穩定的因為是利用局部加權殘值定理積分式。本文中也包含3項數值算例來分析不同情況下的彈性靜力問題,可以顯示MLPG法在分析彈性靜力時有著相當的效率以及精確度。最後本文也附上了程式可以方便日後對MLPG法之研究。
摘要(英) ABSTRACT
In this essay, the Meshless Local Petrov-Galerkin (MLPG) method for solving problems in elasto-statics is developed and numerically implemented. Moving least squares approximation is employed for constructing shape functions. There is an issue of imposition of essential boundary conditions. The original MLPG proposed by Atluri et al. uses the penalty method. MLPG does not need any finite element mesh, it is a truly meshless method. The major idea in MLPG is, however, that the implementation of the integral form of the weighted residual method is confined to a very small local subdomain of a node. The MLPG is more sable due to the use of locally weighted residual integration. In this essay, there are three numerical examples to analyze the problem in elasto-statics in different situations. it shows MlPG is quite efficient and accuracy in analyzing the problem in elasto-statics. In the end of this essay, the program to study MLPG is enclosed.
關鍵字(中) ★ 無網格局部皮得洛夫葛勒金法
★ 變動最小平方法
關鍵字(英) ★ meshless local petrov-galerkin method
★ moving least square method
論文目次 目 錄
中文摘要.................................................................... I
英文摘要…............................................................... II
目錄........................................................................... III
圖目錄....................................................................... V
表目錄....................................................................... VI
第一章 緒論
1.1 前言................................................................... 1
1.2 文獻回顧........................................................... 1
1.3 研究目的........................................................... 4
1.3 本文架構........................................................... 4
第二章 變動最小平方法
2.1 前言................................................................... 6
2.2 變動最小平方法基本理論............................... 6
2.2加權函數........................................................... 11
第三章 無網格局部皮得洛夫葛勒金法
3.1 前言................................................................... 12
3.2 無網格局部皮得洛夫葛勒金法之推導........... 12
3.3 無網格局部皮得洛夫葛勒金法之程式流程... 20
第四章 數值範例
4.1 前言............................................................... 22
4.2 範例1:補丁試驗............................................ 22
4.3 範例2:懸臂梁................................................ 25
4.4 範例3:中間挖一圓孔矩形平板.................... 29
第五章 結論與未來發展
5.1 結論................................................................... 32
5.2 未來發展........................................................... 33
參考文 獻.......................................................................... 34
附錄.................................................................................. 37
參考文獻 參考文獻
1. Lucy L. B. (1977) “A numerical approach to the testing of the fission hypothesis,” The Astron. J, 8(12), pp. 1013-1024
2. Gingold R A, Monaghan J J. (1977) “Smoohed particle hydrodynamics: theory and application to non-spherical stars,” Mon. Not. Roy. Astrou. Soc., Vol. 18 pp. 375~389
3. Benz W. (1990) “Smooth particle hydrodynamics: a review. In: Buchler J R ed,” The Numerical Modeling of Stellar Pulsation. Dordrecht: Kluwer, 269
4. Lancaster P, Salkauskas K.(1981) Surfaces generated by moving least squares methods. Math. Comput., Vol. 37(155) pp. 141~158
5. Nayroles B, Touzot G., Villon P. (1992) “Generalizing the finite element method: diffuse approximation and diffuse elements,” Comput. Mech., Vol. 10 pp. 307-318
6. Belytschko T., Lu Y. Y. (1994) “Element free Galerkin method,” Int. J. Num. Meth Engng., Vol. 37, pp. 229-256
7. Chung H. J., Belytschko T. (1998) “An error estimate in the EFG method,” Comput. Mech., Vol. 21, pp. 91-100
8. Dolbow J., Belytschko T. (1999) “Numerical integration of the Galerkin weak form in meshfree methods,” Comput. Mech., Vol. 23, pp. 219-230
9. Belytschko T, Krongauz Y., Organ D., et al. (1996) “Smoothing and acclerated computions in the element free Galerkin method,” J. Comput. Appl. Math, Vol. 74, pp. 111-126
10. Krongauz Y , Belytschko T. (1998) “EFG approximation with discontinuous derivatives,” Int. J. Num. Meth. Engng., Vol. 41, pp. 1215~1233
11. Krysl P, Belytschko T. (1995) “Analysis of thin shells by element-free Galerkin method,” Comput. Mech., Vol. 17, pp. 186~195
12. Liu W K, Jun S., Zhang Y. F. (1995) “Reproducing Kernel Particle methods,” Int. J. Num. Meth. Fluids, Vol. 20, pp. 1081-1106
13. Liu W K, Chen Y, Jun S et al. (1996) “Overview and applications of the reproducing kernel particle methods,” Archives of Computational Method in Engineering, State of the art review, 3(1): 3~80
14. Duarte C A, Oden J T. (1995) Hp clouds: a meshless method to solve boundary-value problem Technical Report 95-105. Texas Institute for Computational and Applied Mathematics. University of Taxes at Austin.
15. Duarte C A, Oden J T. (1996) “Hp clouds: a h-p meshless method,” Numerical Methods for Partical Differential Equations, Vol.12, pp. 673~705
16. Duarte C A, Oden J T. (1996) “An h-p adaptive method using clouds,” Comput Methods Appl. Mech. Engrg., Vol.139, pp. 237~262
17. Melenk J M, Babuska I. (1996) “The partition of unity finite element methods: Basic theory and application,” Comput. Methods Appl. Mech. Engrg., 139: 263~288
18. Babuska I, Melenk J M. (1997) “The partition of unity methods,” Int. J. Num. Mech. Engng., Vol.40, pp. 727~758
19. Zhu T, Zhang J, Atluri S N. (1998) “A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach,” Comput. Mech, Vol. 21, pp. 223-235
20. Zhu T, Zhang J, Atluri S N. (1998) “A meshless local boundary integral equation (LBIE) method for solving nonlinear problems,” Compute. Mech., Vol.22, pp. 174~186
21. Atluri S N, Sladek V et al. (2000) “The Local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity,” Comput. Mech., Vol.25, pp. 180~198
22. Atluri S. N., Zhu T. (1998) “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech, Vol. 22, pp. 117-127
23. Atluri S. N., Zhu T. (2000) “The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics,” Comput. Mech., Vol.25, pp. 169~179
24. Liu G. R.., Gu Y. T. (2000) “Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approachs,” Comput. Mech, Vol. 26, pp. 536-546
25. Liu G. R. (2002) Mesh Free Method: Moving Beyond the Finite Element Method, CRC Press, New York
指導教授 鄔蜀威(Shu-Wei Wu) 審核日期 2006-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明