博碩士論文 93343002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.223.32.230
姓名 胡凡勳(Farn-Shiun Hwu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 發光二極體晶片之熱電耦合分析
(The Analysis on LED chips by the thermal-electrical coupling method)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 發光二極體(LED)之用途日漸廣泛,交流電發光二極體(AC LED)技術也於近年日漸成熟並商品化。AC LED之發熱情形與傳統LED在直流電操作下之穩定熱源有所差異,而現階段對於AC LED之相關研究甚少提及其發熱情形與接面溫度量測之方式。為了量測AC LED之接面溫度,本文提出一種搭配實驗與數値修正的方法來模擬AC LED在AC和DC操作條件下的溫度分布。並找出AC LED在DC操作下所量測到的接面溫度和封裝基板底部溫度之關係,這一關係亦可由數値模擬確認。且數値計算所得的基板溫度與實驗的觀察具有一致性,其溫度變化並不像交流電流的作用那麼敏感,此或許為基板之質量相對晶片質量而言大了許多。在數値模擬中可以明顯看到AC LED接面溫度的振盪;然而,AC LED接面溫度的振盪情形卻很難被量測到。因此,本研究提出一公式來計算AC LED的接面溫度振盪範圍。
而隨著發光二極體的操作功率日漸升高,其晶片之發熱越來越大,而溫度對於晶片的各項電光特性皆有所影響,故爲深入了解LED晶片中的電熱特性,本文建立三維數值模擬的熱電耦合模型來進行高功率垂直電流注入(vertical)發光二極體晶片之電場與溫場模擬及分析。另外對於垂直電流注入LED晶片中,n 電極與電流阻擋層的大小對於熱與電特性的影響進行探討。藉由數値模擬所計算出的LED順向偏壓與相關文獻的實驗數據相當吻合,也觀察出熱與電之對於LED晶片的效能具有耦合的影響。在沒有電流阻擋層的情形時,活化層的電流密度分布與溫度分布、LED晶片的順向偏壓和焦耳熱所佔的百分比,隨著n電極面積的減小而增加。在加入電流阻擋層後,在晶片大小為600×600 μm2的情形下,有效出光區域的電流密度在L = 500 μm時變得比較均勻。較均勻的溫度分布是出現在L = 200 μm的條件下,而L =300 μm時則可得到最大的功率轉換效率(Wall-plug Efficiency)。而針對LED晶片n-GaN層的導電率與厚度等參數對其電及熱特性的影響加以分析後發現導電率對於電流密度的影響相當敏感,在小的導電率條件下電流壅塞在n電極下方區域的情形非常嚴重。而當導電率增大至σ=5×104 S/m時,電流密度的分布則相當均勻。而n-GaN層厚度的增加對於活化層電流密度的影響並不顯著,且需考慮n-GaN層厚度增加後對光學的影響,以及製程的時間成本因素,使得一般較少藉由增加n-GaN層厚度來進行電流均勻性的改善。另外,將n-GaN磊晶層的導電率與厚度相乘後發現當其積為固定値時,電流密度的分布情形亦相同。可以推論得n-GaN的導電率與厚度的乘積若大於一特定値,晶片活化層之電流密度分布將會相當均勻。
摘要(英) The usages of Light-emitting diodes (LED) are widely in the modern life. A novel design for LED chip to operate under the alternating current named alternating current light-emitting diode (AC LED). Recently, the manufacturing technology for AC LED is progressive, and the commercial products of AC LED are in the market. The situation of heat generation in AC LED is different from that in conventional LED. But few literatures have mentioned about the thermal issue of AC LED or the determining method of the junction temperature of AC LED. A numerical simulation is used to simulate the temperature distribution during AC and DC operations of an alternating current light-emitting diode (AC LED). The relationship between the junction temperature and the temperature at the center of the bottom surface of the submount of an AC LED is measured under DC operation. This relationship is confirmed by numerical simulation. The numerical results are consistent with the experimental observations in that the temperature at the center of the bottom surface of the submount is insensitive to the current variations that occur in an AC LED, probably due to the large mass of the submount. However, it is difficult to measure the temperature oscillation at the junctions in an AC LED, although this oscillation can be clearly seen in the numerical results. Therefore, we propose a formula for predicting the range of the oscillating junction temperature for an AC LED.
Since the input power is increased for high power LED, the heat generating form the chip increases. The electrical and optical characteristics of LED are significantly influenced by the temperature of LED chip. In order to analyze the thermal effect in the LED chip, a three-dimentional numerical simulation model with the coupling of the thermal and electrical characteristics is developed. The influence of the size of the n-electrode and current blocking layer (CBL) on the thermal and electrical characteristics of a vertical-injection GaN-based light-emitting diode (LED) chip is investigated by a numerical simulation. The predicted forward voltages are quite consistent with previous experimental data. The coupled thermal and electrical effects affect the performance of an LED chip. For cases without CBL, the variation of current density and temperature distributions in the active layer, and the forward voltage and Joule heating percentage of the LED chip increase as the n-electrode width (L) decreases. The insertion of a CBL into a 600×600 μm2 chip leads to greater uniformity in the distribution of the current density in the effective light-emitting area in the case when L = 500 μm. A more uniform temperature distribution in the active layer occurs when L = 200 μm while the case when L = 300 μm has the maximum Wall-plug Efficiency (WPE). Some parameters of LED chip, such as conductivity and thickness of n-GaN layer will influence the electrical and thermal characteristics of the chip. Especially the current density is significantly influenced by the conductivity of n-GaN layer. When the conductivity is lower, the current crowding in the active layer under the n-electrode. But when conductivity is enlarged to the value of 5×104 S/m, the distributing of current density is rather uniform. The influence on current density in the active layer by increment of the n-GaN layer thickness is not obviously. And the increment of n-GaN thickness will also decrease the light output, increase the time and cost of manufacturing process. It is unusual to carry on the improvement of the uniformity of current density by increasing the thickness of n-GaN layer. Nevertheless, if the product of conductivity and thickness of n-GaN layer is a constant, the current density distribution in active layer will be the same one. The current density in the active layer of LED chip may be more uniform when the product of conductivity and thickness of n-GaN layer is higher than one particular value.
關鍵字(中) ★ 接面溫度
★ 數值模擬
★ 交流電發光二極體
★ 發光二極體
關鍵字(英) ★ AC LED
★ LED
★ numerical Simulation
★ junction temperature
論文目次 目錄
中文摘要 ……………………………………………………………….. i
Abstract …………………………………………………………………iii
誌謝 ……….…………………………………………………….……... v
目錄 ……….…………………………………………………………... vi
圖目錄 ……………………………………………………………… viii
表目錄 …………………………..………………….………..……….. xi
符號說明 …………………………………..……….…….………….. xii
第一章 緒論 …………………….…………………………………….. 1
1-1 研究背景…………………….……………………………..…… 1
1-2 相關研究………………….…………………………………….. 3
1-2-1 白光LED之特點……………………………..….………... 3
1-2-2 AC LED進展………………….………………………….. 4
1-2-3 電極與電流阻擋層對電流分布之研究………..………….. 6
1-3 研究動機與目的…………………….………………………….. 9
第二章 理論模型與數值方法……………………………..…..…….. 15
2-1 p-n接面理論 …………………………………………..…..…... 15
2-2數值模擬之電場相關理論………….………………………... 17
2-2-1 統御域設定與邊界條件……………………………..…. 17
2-2-2 活化層之等效電阻假設 …………………………….…. 19
2-3 數値模擬之熱方程式及邊界條件…………………..………… 20
第三章 系統設備與實驗方法…………………………………….….. 24
3-1 接面溫度量測原理…………………………………………... 24
3-2 接面溫度量測設備及操作方式……………………………….. 25
第四章 AC LED接面溫度量測及模擬……………………………... 34
4-1 AC LED實驗量測………………….……..……………………. 34
4-2 AC LED模擬相關設定.…………..………….………………. 35
4-3 結果和討論 ……………………………………..…………… 36
4-4本章結論………………………………………………………... 40
第五章 Vertical LED晶片熱電耦合分析…………………………... 58
5-1 垂直注入電流LED模型概述…………..……………………... 58
5-2 結果與討論…………………………………………………... 59
5-3 本章結論……………………………………………………... 67
第六章 總結論 ……………………………………………………… 88
參考文獻 …………………………………………………………….. 91
圖目錄
圖1-1 目前各種光源的發光效率的趨勢比較圖......................................... 12
圖1-2 LED發光效率與其晶片接面溫度關係圖…..……..……….….…. 13
圖2-1 p-n 接面示意圖(a) 接合前 (b) 接合後............................…........... 22
圖2-2 (a)零偏壓下的p-n junction和(b) 順向偏壓的情形........…..............22
圖2-3 數值模擬的流程圖........................................…………………........ 23
圖3-1 實驗設備架構...............................................…………………....... 27
圖3-2 順向偏壓與溫度關係圖(TSP溫度校正)..................................…..... 28
圖3-3 小烤箱之量測…..…………………………………………………. 29
圖3-4 LED燈泡連接各點熱電偶後置於樣品試驗室內…..…………….. 30
圖3-5 測試主機(PTJ6002)..……………………………………………….. 31
圖3-6 實驗所得溫度資料模式………………………………………….... 32
圖4-1 AC LED 封裝樣品及晶片之照片…..……………………………... 41
圖4-2 晶片陣列中電流流動方向…….…………………..…………….. 42
圖4-3 不同輸入DC電功率下AC LED樣品中之Tj and TB………..……... 43
圖4-4 在12伏特交流電操作下AC LED的TB値……………………..……. 44
圖4-5 在DC操作條件下所得到之 I-V 曲線…………………………..….. 45
圖4-6 AC LED 封裝元件之有限元素網格圖……………………..……... 46
圖4-7 數值模擬與實驗所得之溫度資料………………………...…….. 47
圖4-8 (a)、(b)、(c)、(d)分別為60 Hz 交流電條件下1週期時間四等分的 溫度分布圖.....................................................................…………... 48
圖4-9 接面溫度和基板底面中心溫度的振盪情形..……………………. 49
圖4-10 對於不同輸入電功率條件下之接面溫度振盪情形…………..… 50
圖4-11 60Hz下一週期中電位隨時間之變化情形…………..…………... 51
圖4-12 中間下側晶片active layer中央點位置之電位隨時間變化曲線圖 52
圖4-13 熱電耦合時60Hz下一週期中溫場隨時間之變化情形……..….. 53
圖4-14 正負半週皆點亮晶片之溫度隨時間變化圖…………………… 54
圖4-15 正半週點亮晶片溫度隨時間變化圖……..………..…….……… 55
圖4-16 負半週點亮晶片溫度隨時間變化圖…….………………..…… 56
圖5-1 垂直電流注入LED的橫截剖面………………..………………….. 69
圖5-2 不同輸入電流條件下活化層的電流密度………………..……….. 70
圖5-3 (a)和(b)在n電極邊長L = 200 μm情形下計算所得活化層的電位 和電流密度(箭號)。圖(c)為圖(b)條件下之溫度分佈….…….. 71
圖5-4 (a)未考慮熱效應與(b)熱電耦合條件下活化層的電壓降; (c)電流密度分布(d)溫度分布…..……………………………..…. 72
圖5-5 在五種不同CBL(n電極)面積情形下活化層的溫度分布(彩色)與電流密度(點)之數值模擬結果……………........................................ 74
圖5-6 不同電流阻擋層面積(L=100~500μm)條件時活化層中沿著長度方向(X)從晶片中心到邊緣之電流密度分布…………………......... 75
圖5-7 無電流阻擋層和有電流阻擋層時,不同n電極邊長情形下所得之活化層最高溫度與最低溫度差,以及活化層的平均溫度…….…76
圖5-8 加入電流阻擋層後與無電流阻擋層情形之順向偏壓及實驗結果之比較………………………………………………………….......... 77
圖5-9 有電流阻擋層和無電流阻擋層兩種情況下,L對晶片焦耳熱所佔總發熱百分比之關係…………………………..…......................... 78
圖5-10 不同n電極邊長情形下固定輸入電流100mA時,計算所得之功 率轉換效率…………………………………………..………...... 79
圖5-11 固定n-GaN磊晶層厚度為2.5μm時,不同導電率對於活化層上電流密度的分布情形...................................………........................... 80
圖5-12 各種導電率條件下計算所得的結果,沿著晶片中央到邊緣方向擷取活化層中的電流密度分布情形...........................…………........81
圖5-13 固定n-GaN磊晶層厚度為2.5μm時,不同導電率對於活化層上溫度分布情形...........................................................…………........82
圖5-14 固定n-GaN導電率σ=1×104 S/m時,不同n-GaN層厚度對於活化層上電流密度的分布情形.....................................………........83
圖5-15 各種n-GaN層厚度條件下計算所得的結果,沿著晶片中央到邊緣方向擷取活化層中的電流密度分布情形.................………........84
圖5-16 固定n-GaN導電率σ=1×104 S/m時,不同n-GaN層厚度對於活化層上溫度的分布情形......…………………….........………........85
圖5-17 特定n-GaN層厚度與導電率組合後,沿著晶片中央到邊緣方向擷取活化層中的電流密度分布情形.........…………......………........86
表目錄
表1-1 固態照明-LED 進程表………………………….………………… 14
表3-1 本研究使用接面溫度量測設備規格…………….….…………….. 33
表4-1 數值模擬中所使用的材料性質……………….…………………... 57
表5-1 數值模擬中使用之導熱性………….……………………………... 87
表5-2 改變n-GaN層的厚度及導電率的參數值…………….….….….. 87
參考文獻 1. OIDA, An OIDA Technology Roadmap Update (2002).
2. http://wp168.wordpress.com/2009/02/04/nichias-leds-hit-249-lmw
3. http://www.cree.com
4. http://www.philipslumileds.com/products/luxeon/luxeonK2
5. Philipslumileds, Luxeon Emitter Technical Datasheet.
6. B. Damilano, N. Grandjean, C. Pernotl, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells,” Jpn. J. Appl. Phy. Part 2 40, L918 (1996).
7. T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double heterostructure LEDs,” J. Crystal Growth 189, 778 (1998).
8. E. Kuokstis, J. Zhang, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, “Polarization effects and UV emission in highly excited quanternary AlGaN quantum wells,” Phy. Stat. Sol. (b) 228, 559 (2001).
9. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149 (1967).
10. D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect,” Phys. Rev. Lett. 53, 2173 (1984).
11. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett. 85, 5143 (2004).
12. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Demonstration of Nonpolar m-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates,” Jpn. J. Appl. Phy. Part 2 44, L173 (2005).
13. 王為,LED技術成熟-應用市場蓄勢待發,工業技術與資訊,vol. 173, 3 (1996)。
14. R. Österbacka, A. J. Pal, K.-M. Källman, and H. Stubb, “Frequency response of molecularly thin alternating current light-emitting diodes,” J. Appl. Phys., 83, 1748 (1998).
15. R. Österbacka, A. J. Pal, and H. Stubb, “High frequency alternating current light-emitting diodes using Langmuir-Blodgett films,” Thin Solid Films, 327-329, 668 (1998).
16. T. Tamura, T. Setomoto, and T. Taguchi, “Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100V operation,” J. Luminescence, 87-89, 1180 (2000).
17. J.-P. Ao, H. Sato, T. Mizobuchi, K. Morioka, S. Kawano, Y. Muramoto, Y.-B. Lee, D. Sato, Y. Ohno, and S. Sakai, “Monolithic blue LED series arrays for high-voltage AC operation,” Phys. Stat. Sol. (a), 194, 376 (2002).
18. H.-H. Yen, W.-Y. Yeh, and H.-C. Kuo, “GaN alternating current light-emitting device,” Phys. Stat. Sol. (a), 204, 2077 (2007).
19. I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada, and T. Mukai, “White LEDs for solid state lighting,” Proc. SPIE 5187, 1 (2004).
20. J. R. Brodrick and C. E. Christy, “Accelerating the development of next-generation solid-state lighting sources,” Proc. SPIE 5530, 1 (2004).
21. G. J. Sheu, J. C. Chen, J. Y. Shiu, and C. Hu, “Synthesis of negative thermal expansion TiO2-doped LAS substrates,” Scripta Materialia 53, 577 (2005).
22. M. Arik and S. Weaver, “Effect of chip and bonding defects on the junction temperatures of high-brightness light-emitting diodes,” Opt Eng 44, 111305-1 (2005).
23. M. Arik, J. Petroski, and S. Weaver, ASME/IEEE INTERPACK 2001 Conference, Kauai, Hawaii. (2001).
24. M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal management of LEDs: package to system,” Proc. SPIE 5187, 64 (2004).
25. F. Wall, P. S. Martin, and G. Harbers, “High-power LED package requirements,” Proc. SPIE 5187, 85 (2004).
26. 許國君、陳志臣、胡凡勳、鄭健宏,“新世代照明技術:LED元件封裝之熱管理分析,”光學工程 第九十期,69 (2005)。
27. G. J. Sheu, F. S. Hwu, S. H. Tu, W. T. Chen, J. Y. Chang, and J. C. Chen, “The heat dissipation performance of LED applied a MHP,” Proc. SPIE 5941, 594113 (2005).
28. F. S. Hwu, G. J. Sheu, and J. C. Chen, “Thermal modeling and performance of LED packaging for illuminating device,” Proc. SPIE 6337, 63371J (2006).
29. Y. C. Lee, J. C. Chen, F. S. Hwu, G. J. Sheu, W. D. Chen, and J. Y. Chang, “Passive heat dissipation devices for high power LEDs,” Proc. of the Eighth Chinese Optoelectronics Symposium, (2006).
30. I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek, Jr., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28 (1999).
31. X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90, 4191 (2001).
32. D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, “A study of transparent contact to vertical GaN-based light-emitting diodes,” J. Appl. Phys. 98, 053102-1 (2005).
33. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett. 90, 263511-1 (2007).
34. H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,“ Appl. Phys. Lett. 77, 1903 (2000).
35. H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron Devices 48, 1065 (2001).
36. H. Kim, S. J. Park, and H. Hwang, “Design and fabrication of highly efficient GaN-based light-emitting diodes,” IEEE Trans. Electron Devices 49, 1715 (2002).
37. H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, and T. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91, 023510-1 (2007).
38. X. Guo, Y. L. Li, and E. F. Schubert, “Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry,” Appl. Phys. Lett. 79, 1936 (2001).
39. T. M. Chen, S. J. Wang, K. M. Uang, S. L. Chen, W. C. Tsai, W. C. Lee, and C. C. Tsai, “Use of anisotropic laser etching to the top n-GaN layer to alleviate current-crowding effect in vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett. 90, 041115-1 (2007).
40. S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an insulating SiO2 layer underneath p-pad electrodes,” Electrochem. Solid State Lett. 10, H175 (2007).
41. H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, and T. Y. Seong, “Consideration of the Actual Current-Spreading Length of GaN-Based Light-Emitting Diodes for High-Efficiency Design,” IEEE J. Quantum Electron. 43, 625 (2007).
42. A. Chakraborty, L. Shen, H. Masui, S. P. DenBaars, and U. K. Mishra, “Interdigitated multipixel arrays for the fabrication of high-power light-emitting diodes with very low series resistances,” Appl. Phys. Lett. 88, 181120-1 (2006).
43. S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett. 87, 011111-1 (2005).
44. J. T. Chu, C. C. Kao, H. W. Huang, W. D. Liang, C. F. Chu, T. C. Lu, H. C. Kuo, and S. C. Wang, “Effects of Different n-Electrode Patterns on Optical Characteristics of Large-Area p-Side-Down InGaN Light-Emitting Diodes Fabricated by Laser Lift-Off,” Jpn. J. Appl. Phys. 44, 7910 (2005).
45. H. Kim, S. J. Park, and H. Hwang, ”Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl Phys Lett 81, 1326 (2002).
46. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys. 92, 2248 (2002).
47. G. J. Sheu, F. S. Hwu, J. C. Chen, J. K. Sheu, and W. C. Lai, “Effect of the Electrode Pattern on Current Spreading and Driving Voltage in a GaN Sapphire LED Chip,” J. Electrochem. Soc. 155, H836 (2008).
48. J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, and C. C. Sun, “Electrical-optical analysis of a GaN sapphire LED chip by considering the resistivity of the current-spreading layer,” Opt. Rev., 16, 213 (2009).
49. S. Hwang and J. Shim, ”A Method for Current Spreading Analysis and Electrode Pattern Design in Light-Emitting Diodes,” IEEE Trans. Electron Devices 55, 1123 (2008).
50. N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, ”Solid-state lighting- failure analysis of white LEDs,” J. Cryst. Growth, 268, 449 (2004).
51. S. Chhajed, Y. Xi, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys., 97, 054506-1 (2005).
52. E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University Press, Cambridge, England, (2006).
53. J. Kettle, R. M. Perks, and P. Dunstan, “Localised joule heating in AlGaInP light emitting diodes,” Electron. Lett., 42, 1122 (2006).
54. M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin, and S. Y. Karpov, “Coupled modeling of current spreading, thermal effects and light extraction in III-nitride light-emitting diodes,” Semicond. Sci. Technol., 23, 125023 (2008).
55. Z. Ma, X. Zheng, W. Liu, X. Lin, and W. Deng, “Fast thermal resistance measurement of high brightness LED,” IEEE. 2005 6th Int. Conf. on Electronic Packaging Technology, Beijing, China, 1564685 (2005).
56. J. Millman, and A. Grabel, Microelectronics, 2nd ed., McGraw-Hill Book Company, New York, U.S.A. (1987).
57. 陳隆建,發光二極體之原理與製程,全華圖書公司,台北,台灣(2008)。
58. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, H. Kudo, Y. Sudo, M. Kato, and T. Taguchi, “High-output power near-ultraviolet and violet light-emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy,” Proc. SPIE, 5187, 243 (2004).
59. G. E. Myers, Analytical Methods in Conduction Heat Transfer, 2nd ed., AMCHT Publications, Madison, WI (1998).
60. EIA/JEDEC Standard: ‘EIA/JESD51-2’ ,Electronic Industries Alliance, Engineering Department, Arlington, (1995).
61. G. N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold, New York, 38 (1984).
62. 2009 LED固態照明研討會,中壢,台灣,中華民國(2009)。
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2009-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明