博碩士論文 93343011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.217.207.112
姓名 邱奕宏(Yi-Hung Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電蝕條件對鋁電解電容器用鋁箔影響之研究
(EFFECT OF ETCHING PARAMETER ON ALUMINUM ELECTROLYTIC CAPACITOR FOIL)
相關論文
★ 鋁電解電容器用陽極鋁箔電蝕時電化學舉動之研究★ 汽車車體用鋁合金板材、擠型材之研究
★ 汽車車體骨架用6000系鋁合金低溫時效與擠型條件之研究★ 材料製程對汽車車體用鋁合金彎曲加工特性之影響研究
★ 鋁電解電容器用低壓陽極箔鋁箔之研發★ 鋁原箔對鋁電解電容器用高壓陽極鋁箔電解腐蝕舉動之影響研究
★ 電蝕條件對鋁電解電容器用高壓陽極鋁箔電蝕時電化學舉動之影響研究★ 鋁原箔製程參數對低壓鋁電解電容器用陽極鋁箔電解腐蝕舉動影響之研究
★ 微量元素對高壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究★ 微量元素對低壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究
★ 製程履歷對汽車車體用6022 鋁合金析出舉動之影響研究★ 製程條件對汽車車體用6022鋁合金析出擧動之影響
★ 均質化處理及時效處理條件對航空用鋁合金金屬疲勞舉動之影響★ 鋁電解電容器用高純度鋁箔直流電蝕擧動之模型分析
★ 腐蝕環境對航空用7050鋁合金金屬疲勞擧動之影響★ 低壓鋁電解電容器用鋁箔之電蝕條件最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討不同電蝕條件與不同鋁箔製造條件,對於鋁電解電容器用陽極鋁箔之影響。本研究區分為三部份,首先針對高壓用陽極鋁箔之直流電蝕進行研究,接下來探討電流條件對低壓用陽極鋁箔之影響,最後著重於低壓陽極鋁箔之製造流程與其電蝕結果的相關討論。
第一部份:
此部分主要以研究高壓540VF陽極鋁箔為主,分別改變電蝕液成份、溫度、電流密度等條件,探討鋁箔經電化學蝕刻後,其腐蝕組織與形貌對於表面積增加率的影響。首先利用恆電位儀觀察在不同電蝕參數下,電位-時間關係圖。藉由電位、時間的變化推測腐蝕反應進行時的情形。接下來依照不同探討主題來控制不同的電蝕參數,實際進行陽極鋁箔的電化學蝕刻,再按照EIAJ的規範對電蝕鋁箔做540VF的化成處理,並分別量測其靜電容量、重量損失率、引張折曲強度。最後利用光學顯微鏡(OM)與電子顯微鏡(SEM)將腐蝕試片作截面、表面、皮膜複製觀察以了解腐蝕孔洞的分佈狀況。
由實驗結果得知,適當的硫酸添加量,有較適合tunnel蝕孔形成的離子濃度與腐蝕電位,也可以得到較佳的腐蝕組織與靜電容量。而改變電流密度方面,提供的電流密度越大雖有較大的腐蝕電流,但實際用於腐蝕的電量卻較少,所以鋁箔重量損失率較小。至於改變溫度的實驗,溫度越高Cl-離子的擴散速率也越快,重量損失率也越大。而要得到較適合的腐蝕組織,也都要控制較適合的電流密度與電蝕液溫度。
第二部份:
此部份著重於電蝕過程中不同的電流密度及電蝕頻率對於電化學蝕刻後陽極鋁箔的腐蝕組織及靜電容量的影響,藉此精確掌握此二參數對電蝕工程所造成之變化。另外,本實驗透過電化學分析儀的輔助,可清楚瞭解在整個電蝕過程中電位、電流變化的情形,以及孔洞的生成與成長現象,提供更多學理上的瞭解與證明,以期能對整個鋁電解電容器之研究有顯著的助益。
試片經過不同電流密度及電蝕頻率的蝕刻後,先量測試片的重量損失率,隨後將試片依EIAJ規範進行20VF的化成處理,並量測其靜電容量值。利用光學顯微鏡及掃描式電子顯微鏡來觀察鋁箔截面腐蝕深度及表面蝕孔分布的型態。藉由這些方法來比較在不同的電流密度及電蝕頻率條件下所造成的腐蝕組織對最後靜電容量的影響。在電化學分析部份,藉由恆電位儀來觀察在不同的電流密度及電蝕頻率條件下電蝕過程中電位與電流變化的情形。藉由電位或是電流的變化,可判斷在各種條件下腐蝕反應進行情形。
由實驗結果得知:電蝕頻率越高,造成鋁的溶解量越少,形成的孔洞較小但數量較多,而靜電容量值與電蝕頻率並非呈現絕對相關的趨勢;電流密度越高,造成鋁溶解量越多,靜電容量值會有上升趨勢,此外電流密度越高,表面生成的蝕孔也會變多。
第三部份:
本章探討不同製程參數,分別為不同均質化、冷加工量、熱滾軋及安定化處理(stabilizing treatment)等製程,針對於不同製程下所生產之鋁箔進行電化學蝕刻之相關研究。首先利用ICP-AES來分析低壓陽極箔內所含之微量元素,確定其元素及含量,以便後續之研究,並透過極圖分析(pole figure)及穿透式電子顯微鏡(TEM),了解微鋁箔的集合組織和微組織結構。在電化學蝕刻之後,再按照EIAJ的規範對電蝕箔做20VF的化成處理,並量測其靜電容量及重量損失率。利用光學顯微鏡(OM)及掃描式電子顯微鏡(SEM),來觀察電蝕箔之截面腐蝕形態及表面的腐蝕孔洞分佈情形。藉由這些分析方法,來比較不同製程參數所造成之腐蝕組織,對鋁電解電容器用低壓陽極箔之靜電容量的影響。
由實驗得知:在實施不同冷加工量的鋁箔,靜電容量差異不大,其中以90%最佳;而均質化和熱滾軋溫度的提升,可使孔洞分布均勻,減少粗大的孔洞產生,進而增加靜電容量;在安定化處理方面,適當的安定化可使集中的差排消解,得到較佳的差排分佈,經安定化處理其靜電容量都比未安定化處理提昇許多。
摘要(英) This work studies the effects of etching parameters and foil manufacturing process of the aluminum foils used in electrolytic capacitors. There are three parts of this survey showed as below :
Part1 :
This part focus on the survey of 540VF aluminum foil primarily. By changing concentration, current density and etching temperature. We investigated the effects of etching morphology on the surface increment. This experiment first used potentiostat to observe the relationship between potential-time under different etching parameters. Thus we could predict the reaction during etching. According to the selected parameters of electrochemical etching, the aluminum foils have been etched, and the capacitance was measured under EIAJ specifications. For surface, oxide replicas and cross section morphology studies, the samples were examined in the SEM, SEM and OM respectively
From the experiments, it was found that there was a proper sulfuric and hydrochloric acid concentration for tunnel etching. At this concentration we could get a fine microstructure for increasing capacitance. Phosphoric acid could grow a passive film, which protected aluminum from Cl- corrosion. Although high current density had large corrosive current, the current efficiency was bad too. Increased etching temperature could accelerate the diffusion of Cl-. There also had proper current density and temperature for etching process.
Part2 :
This part studies the effects of current frequency and current density on etching morphology, microstructure and static capacity of the aluminum foils used in electrolytic capacitors. The behavior associated with electrochemical etching during an anodic half cycle was investigated by a potentiostat. The oxide covering of the anode, which protected aluminum from etching, thickened as the frequency increased. Increasing the current density inhibit the passing of chlorine ions through the passive cover. The static capacity increased to 70 uF/cm2 with 20 VF forming voltage by optimization the etching parameters used herein this work.
Part3 :
First of all, the chemical compositions of high purity aluminum foils were determined before etching by using the analysis of ICP-AES. This research will examine different parameter of procedure such as different homogenization treatment, cold rolling, hot rolling, and stabilizing treatment. The texture of Al-foil was analyzed by pole figure, and microstructure observation was used by transmission electron microscope (TEM).After electrochemical etching, we forming according to EIAJ standard and measures its capacitance and rate of weight loss. To discuss the effect of capacitance caused by etched structure, the morphology of etched surface and cross section was observed by scanning electron microscope (SEM) and optical microscope (OM).From the observation of etched microstructure, the effect of procedure factors on the etching behavior of high purity aluminum foils could be studied in details.
In the results of experiment, it was found that the capacitance is similar under different cold-rolled. When the temperature of homogenization treatment and hot-rolled was raised, the capacitance will be increase. And then it had fine pit which distributed uniform .The fitting of stabilizing treatment could scatter dislocation. And the sample of stabilizing treatment was carry out , it had better capacitance than not stabilizing treatment.
關鍵字(中) ★ 鋁箔
★ 電化學腐蝕
★ 電蝕鋁箔
★ 電容器
關鍵字(英) ★ e lectorchemical etching
★ foil
★ aluminum
論文目次 Abstract ………………………………………………………… Ⅰ
摘要 ……………………………………………………………… Ⅲ
目錄 ……………………………………………………………… Ⅶ
第一章 緒論 ……………………………………………………… 1
第二章 理論基礎與論文回顧 …………………………………… 4
2.1 電容器的基本構造與原理 ………………………… 5
2.2 鋁電解電容器用鋁箔的性質 ……………………… 8
2.2.1 微量元素對鋁箔性質的影響……………………… 8
2.2.2 加工製程對鋁箔性質的影響……………………… 19
2.3 鋁箔蝕刻的機構與原理……………………………… 27
2.3.1 化學蝕刻的機構與原理…………………………… 28
2.3.2 電化學蝕刻的機構與原理……………………… 30
2.3.3 蝕刻溶液對蝕刻工程的影響…………………… 38
2.4 化成處理的機構與原理……………………………… 48
第三章 實驗方法………………………………………………… 54
3.1 鋁箔微量成分分析…………………………………… 54
3.2 電化學分析…………………………………………… 56
3.3 電化學蝕刻…………………………………………… 56
3.4 電蝕箔化成處理……………………………………… 57
3.5 靜電容量量測………………………………………… 58
3.6 電蝕鋁箔之機械性質量測…………………………… 59
3.7 腐蝕組織觀察………………………………………… 60
第四章 電蝕條件對高壓用陽極鋁箔影響研究………………… 68
4.1 本章摘要……………………………………………… 68
4.2 實驗方法……………………………………………… 69
4.3 結果與討論…………………………………………… 71
4.3.1 電蝕液硫酸濃度對電蝕結果之影響……………… 71
4.3.2 電蝕液硝酸濃度對電蝕結果之影響……………… 73
4.3.3 電流密度對電蝕結果之影響……………………… 75
4.3.4電蝕溫度對電蝕結果之影響……………………… 77
4.4本章結論……………………………………………… 79
第五章 電流條件對鋁電解電容器用低壓陽極箔影響研究…… 101
5.1 本章摘要……………………………………………… 101
5.2 實驗方法……………………………………………… 102
5.3 結果與討論…………………………………………… 104
5.3.1電蝕頻率對電蝕結果之影響……………………… 104
5.3.2電流密度對電蝕結果之影響……………………… 107
5.4本章結論……………………………………………… 110
第六章 製造及熱處理條件對鋁電解電容器用低壓陽極箔影響 147
6.1 本章摘要……………………………………………… 147
6.2 實驗方法……………………………………………… 148
6.3 結果與討論…………………………………………… 150
6.3.1 冷加工量對電蝕結果之影響……………………… 150
6.3.2 均質化溫度對電蝕結果之影響…………………… 152
6.3.3 熱滾軋溫度對電蝕結果之影響…………………… 154
6.3.4安定化條件對電蝕結果之影響…………………… 156
6.4本章結論……………………………………………… 158
第七章 結論 ……………………………………………………… 175
第八章 參考文獻………………………………………………… 178
參考文獻 1. 山口謙四郎,"電解電容器用高純度鋁箔",日本輕金屬雜誌. Vol.35, No.11, pp.365-371, 1985.
2. K. Fukuoka and M. Kurahashi, "Effect of Si-Precipitate on the Capacitance of AC-Etching Al- Electrolytic Capacitor Cathode Foil", 住友輕金屬技報, Vol.31, No.4, pp.10-17, 1990.
3. E. Suganuma, Y. Tanno, I. Umetsu, A. Funakoshi, and K. Matsuki, "Factors Affecting the Formation of a Porous Layer during AC Etching of Aluminum in HCl Solution", 表面技 術., Vol.42, No.9, pp.928-932, 1991.
4. Bakish, R., E. Z. Borders and R. Kornhaas, "On the Fundamentals of Etching High-Purity Aluminum Foil for Capacitor Use", J. Electrochem. Soc., Vol.109, pp.791-795, 1995.
5. E. Suganuma, Y.Tanno, T.Ito, A. Funakoshi, and K. Matsuki,
"Surface Films Formed on Aluminum during AC Etching in Hydrochloric Acid Solution", 表面技術., Vol. 41, No. 10, pp. 1049-1053, 1990.
6. C. S. Lin, C. C. Chang and S.H. Hsieh, "Pit Growth of 1050 Aluminum Plates Electrograined in A Nitric Acid", J. Electrochem. Soc., Vol.147, No.10, pp.3647-3653, 1999.
7. 福岡 潔, 倉橋正晴, "高純度アルミニウム箔のトンルエッチンダ及にす微量インジウムの影響", 住友輕金屬技報, Vol.34, No.4, pp.205-210, 1993.
8. P. Laevers, H. Terryn, J. Vereecken, B. Kernig and B. Grzemba, "The Influence of Manganese on The AC Electrolytic Graining of Aluminum", Corrosion Sci., Vol.38, No.3, pp.413-429, 1996.
9. K. Fukuoka and M. Kurahashi, "Effect of Indium on the Etching Phenomena for High Purity Aluminum Foil", 住友輕金屬技報, Vol.34, pp.205-212, 1993.
10. Kenshiro YAMAGUCHI*, "High purity aluminum foil for electrolytic capacitor",日本輕金屬雜誌, Vol.35, No.11, pp. 365-371, 1985.
11. K. Arai and T. Suzuki and T. Atsumi, "Effectbof Trace Elements on Etching of Aluminum Electrolytic Capacitor Foil", J. Electrochem. Soc.:Solid State Science and Technology, Vol. 132, No.7, pp.1667-1670, 1985.
12. H.P. Hack, Metals Handbook, Vol.13, Corrosion 9th ed., ASM, Metals Park, OH, pp.234,1987.
13. L. V. Alphen, P. Nauwen, and J. Slakhorts, "The Relation Between the Composition the Structure Parameters and the Etchability of Alloyed Al-Cathode Foils for Electrolytic Capacitors", Z. Metallkde, Bd70, H3, pp.158-167, 1979.
14. 黃仁輝,"陰極鋁箔還原表面的電化學特性研究",大同大學化學工程研究所碩士論文,1987年6月.
15. 邱宗文"電解電容器的陰極箔電化學特性之研究",大同大學化學工程研究所碩士論文,1985年6月.
16. 朱俊悌,"電容器用電蝕鋁箔陰極箔之研究", 國立中央大學機械工程研究所碩士論文,1997年6月.
17. 吳昆祐,"鋁電解電容器用1000系陰極鋁箔之研究", 國立中央大學機械工程研究所碩士論文,2001年6月.
18. H. C. Chen, and B. L. Ou, "Effects of trace silver on etching of aluminum electrolytic capacitor foil", J .Mate. Sci.: Mater El., Vol.15, pp.297-301, 2004.
19. O. Seri, "Occurance of Pitting Sites of Aluminum Electrolytic Capacitor Electrode by Applying Cathodic Current", 表面技術, Vol.40, No.11, pp.1293-1296, 1989.
20. T. Suzuki, k. Arai, M. Shiga, and Y. Nakamura, Metall., "Impurity Effect on Cube Texture in Pure Aluminum Foils", Metall. Trans.A,Vol.16A, pp.27-36, 1985.
21. W. Lin, G. C. Tu, C. F. Lin and Y. M. Peng, "The Effect of Lead Impurity on the DC-Etching Behavior of Aluminum Foil for Electrolytic Capacitor Usage", Corrosion Sci., Vol.38, pp.889-907, 1996.
22. W. Lin, G. C. Tu, C. F. Lin and Y. M. Peng, "The Effect of Indium Impurity on the DC-Etching Behavior of Aluminum Foil for Electrolytic Capacitor Usage", Corrosion Sci., Vol.39, pp.1531-1543, 1997.
23. 曾美貴,"鋁電解電容器用高壓陽極鋁箔腐蝕舉動之研究", 國立中央大學機械工程研究所碩士論文,2000年6月.
24. 黃建智,"鋁電解電容器用陽極鋁箔電蝕時電化學舉動之研究", 國立中央大學機械工程研究所碩士論文,2001年6月.
25. 陳學奇," 鋁電解電容器用鋁箔之研究", 國立中央大學機械工程研究所博士論文,2005年12月.
26. 許志強,"鋁原箔對鋁電解電容器用高壓陽極鋁箔電解腐蝕舉動之影響研究",國立中央大學機械工程研究所碩士論文,2002年6月.
27. 黃志龍,"鋁電解電容器用低壓陽極鋁箔電解腐蝕舉動之研究", 國立中央大學機械工程研究所碩士論文,2000年6月.
28. 陳學奇,"鋁電解電容器用鋁箔之研究", 國立中央大學機械工程研究所博士論文,2005年12月.
29. 林光前,"鋁原箔製程參數對低壓鋁電解電容器用陽極鋁箔電解腐蝕舉動影響之研究", 國立中央大學機械工程研究所碩士論文,2003年6月.
30. 黃信文,"微量元素對低壓鋁電解電容器用陽極鋁箔電解腐蝕舉動影響之研究", 國立中央大學機械工程研究所碩士論文,2003年6月.
31. 川島 浪夫, 中村 雄造, 西坂 基,日本輕金屬雜誌, Vol.21, pp.54, 1956.
32. P. C. M. de Haan, J. van Ri jkom and J. A. H. Sontgerath, Mater. Sci. Forum, Vol. 217, pp. 765-770, 1996.
33. N. KANZAKI, "Current Situation and Issues of Surface Treatment for Aluminum Electrolytic Capacitor", 表面技術, Vol.48, No.10, pp.976-981, 1997.
34. F. Haessner, G. Masing and H. P. Stuwe, Z. Metallk., Vol. 47, pp.743-750,1956.
35. R. Rixen, R. Musick, H. Goker and K.lucke, Z. Metallk., Vol. 66, pp.16-26,1975.
36. 伊騰 邦夫,"Texture of Aluminum alloy sheet",輕金屬, Vol. 43, No.5, pp.285-293, 1993.
37. 日本輕金屬學會四十周年出版, "工業用純アルミニウム", アルミニウムの組織と性質, pp.171-189, 1991.
38. A. Oscarsson, H. E. Ekstrom and W. B. Hutchinson, "Transition from discontinuous to continuous recrystallization in strip-cast aluminum alloys", Trans. Tech. Publications, pp. 177-182, 1992.
39. K. Arai and T. Suzuki, J. Japan Inst. Light Met., Vol. 31, pp.334-340, 1981.
40. K. Arai and T. Suzuki, J. Japan Inst. Light Met., Vol. 31, pp.675-682, 1981.
41. 新井 浩三, 鈴木 崇生;日本輕金屬雜誌, Vol.31, pp.675, 1981.
42. Izaya NAGATA, "Aluminum foils for electrolytic capacitors from the stand point of capacitor manufacturers", 日本輕金屬雜誌,Vol.38, No.9, pp.552-557, 1988.
43. J. C. Cuyas, J. D. Culcasi and C. L. Liorente, "Inhomogeneity of Rolling and Annealing Texture in Aluminum", light metal june, pp.12-14, 1988.
44. T. Furu and E. Nes, "Growth rates of recrystallized grains in highly deformed commercial purity aluminum, an experimental and modeling study", Mater. Sci. Forum, Vol.113, pp.311-316, 1993.
45. 福井 康司, 清水 遵, 牧本 昭一;日本輕金屬雜誌, Vol.40, No.9, pp. 712-724, 1990.
46. B. Major, "Texture, microstructure, and stored energy inhomogeneity in cold rolled commercial purity aluminum and copper", Materials Science and technology, Vol.8, pp. 510-515, june,1992.
47. K. Brown and J. Inst, Met., Vol.100, pp. 341-345, 1972.
48. D. J. Lloyd and M. ryvola, Microstr. Sci., Vol.12, pp. 577-585, 1984.
49. H. hero and J. A. Mikkelsen, J. Inst. Met., Vol. 97, pp. 18-22, 1969.
50. N. Hansen, Trans. AIME, Vol.245, pp.2061-2068, 1969.
51. F. Schuh and M. Von Heimendahl, Z. Metallk., Vol.65, pp 346-352, 1974.
52. D. H. Rogers and W. T. Roberts, "Rolling textures in aluminum sheet", Z. Metallkde.,Bd65, H2, pp.100-105,1974.
53. 邊見善三, 永井 武,日本輕金屬雜誌, vol.31, pp.329, 1967.
54. K. Vu Quang, F. Brindel, G. Laslaz and R. Buttoudin, "Pitting Mechanism of Aluminum in Hydrochloric Acid under Alternating Current", J. Electrochem. Soc.:Electrochemical science and Technology Vol. 130, No.6 pp. 1248-1305, 1983.
55. E. Makino, T. Yajima, T. shibata, Y. Tanno and E. Suganuma, "In situ Observation of Growing pits during Tunnel Etching of Aluminum", Mater. Trans. JIM., Vol. 34, No.9, pp.796-
800, 1993.
56. N. Osawa, K. Fukuoka and Z. Tanobe, "Mechanism of Pit Nucleation of Aluminum Foil for Electrolytic Capacitors during Etching Stage of D.C. Etching", 住友輕金屬技報, Vol.33, pp.166-172,1992.
57. N. Osawa and K. Fukuoka, "Effects of Surface Morphology on Pit Nucleation and Growth of High-Purity Aluminum Foil in Electrolytic Capacitors Used for D.C. Etching", 住友輕金屬技報, Vol.42, No.1, pp.71-76, 2001.
58. F. D. Bogar and R. T. Foley, "The Influence of Chloride Ion on Pitting of Aluminum", J. Electrochem. Soc., April, pp. 462-464, 1972.
59. E. Suganuma , Y. Tanno, I. Umetsu , A. Funakoshi and K. Matsuki ,"Factors Affecting the Formation of a porous Layer during AC Etching of Aluminum in HCL solution",金屬表面技術, Vol.42, pp.928-932, 1991.
60. Eiji Makino, Koji Takeda, Toshikazu Sato, Eiichi SGANUMA, Takeshi ITO and Yuji TANNO, "Direct Current Etching of Aluminum in NaCl/NaNo3 Mixed Electrolytes", 金屬表面技術, Vol.37, No.13, pp.763-768, 1986.
61. T. C. Tan and D. T. Chin, "Effect of Alterating Voltage on the Pitting of Aluminum in Nitrate, Sulfate, and Chloride Solutions", Corrosion, Vol.45, No. 12, pp.984-989, 1989.
62. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器",日本昱蓄電器工業株式會社 pp.183, 1985.
63. R. S. Alwitt, T. R. Beck and K. Hebert, "Electrochemical Tunnel Growth in Aluminum", NACE-9 Advances in Localized Corrosion, pp.145-152, 1987.
64. D. Goad, "Tunnel Morphology in Anodic Etching of Aluminum", J. Electrochem. Soc., Vol.144, No.6, pp.1965-1971, june 1997.
65. Y. Tak, E. R. Henderson and K. R. Hebert, "Evolution of Microscopic Surface Topography during Passivation of Aluminum", J. Electrochem. Soc., Vol.141, No.6, pp. 1446- 1452, 1997.
66. N. Osawa, K. Fukuoka and Z. Tanobe, "The Etching Behavior of Pit Initiation and Tunnel Growth of Aluminum Foil for Electrolytic Capacitors during Early Stage of D.C. Etching", 住友輕金屬技報, Vol.32, pp. 124-131, 1991.
67. R.S. Alwitt, H. Uchi, T.R Beck and R.C. Alkire, "Electrochemical Tunnel Etching of Aluminum", J. Electrochem. Soc.:Electrochemical Science and Technology, Vol.131, No.1 pp.13-17, 1984.
68. Y. Zhou and K. R. Hebert, "A Mathematical Model for the Initiation of Aluminum Etch Tunnels", J. Eletrochem. Soc., Vol.145, No.9, pp.3100-3109, 1998.
69. K. Hebert and R. Alkire, "Growth Rates of Aluminum Etch Tunnels", J. Electrochem. Soc., Electrochemical Science and Technology, Vol. 135, No.10, 2447-2452, 1988.
70. K. Hebert and R. Alkire, "Growth and Passivation of Aluminum Etch Tunnels", J. Electrochem. Soc., Electrochemical Science and Technology, Vol. 135, No.9, 2146-2157, 1988.
71. J. H. Jeong, C. H. Chio, and D. N. Lee, "A model for the〈100〉crystallographic tunnel etching of aluminum", J. Mater. Sci., Vol.31 No. 5811-5815, 1996.
72. C. K. Dyer and R. S. Alwitt, "Surface Changes during A.C. Etching of Aluminum", J.Electrochem. Soc.:Electrochemical Science and Technology, Vol.128, No.2, pp.300-305, 1981.
73. Y. Tanno and E. Suganuma, "Resin Replica Technique for SEM Observation of Progressive Pits Produced During AC Etching of Aluminum", 金屬表面技術, Vol.38, No.8, pp.31-32, 1987.
74. Y. Tanno and E. Suganuma,"TEM Observation of Surface Films Formed on Aluminum under AC Etching in Hydrochloric Acid",
金屬表面技術, Vol.38, No.10, pp.32-33, 1987.
75. K. MATSUKI, K.Tachibana, A.FUNAKOSHI and E.SUGANUMA, "Polarization Behavior of Aluminum in Hydrochloric Acid During AC Etching", 金屬表面技術, Vol. 38, No.6, pp.38-42, 1987.
76. K.MATSUKI, K.Tachibana, M. Sugawara, A.FUNAKOSHI and E. SUGANUMA,"Study on AC Etching of Aluminum in Hydrochloric Acid Solution by Cyclic Chronotentiometry", 金屬表面技術, Vol.39, No.12, pp.34-40, 1988.
77. E. SUGANUMA, Y. Tanno and A. FUNAKOSHI, "Etching Layer Structure Produced by AC Etching of Aluminum in Hydrochloric Acid Solution", 表面技術, Vol.51, No.9, pp.929-933, 2000.
78. J. H. Jeong, S. S. Kim, H. G. Kim, C. H. Chio, and D. N. Lee, " Electrochemical A C Etching of Aluminum Foils in Hydrochloric Acid Electrolytes", J. Materials Scienccce Form., Vols. 217-222, pp.1565-1570, 1996.
79. H. Zhong ,R. Ichins, M. Okids and T. Oki, "The Effect of Frequency on the Characteristics of Al Foil during AC Etching under Potential Control", 表面技術, Vol.46, pp. 739-744,1995.
80. D. Bogar and R. T. Foley, "The Influence of Chloride Ion on Pitting of Aluminum", J. Electrochem. Soc., April, pp. 462-464, 1972.
81. J. Flis and L. Kow Alczyk, "Effect of Sulphate Anions on Tunnel Etching of Aluminum", Journal of Applied Electrochemistry, Vol.25, pp.501-507, 1995.
82. A. Hibino, M. Tamaki, Y. Watanabe and T. Oki, "The Effect Sulfuric Acid on Tunnel Etching of Aluminum in Hydrochloric Acid", 輕金屬, Vol.42, pp.440-445, 1992.
83. G. E. Thompson and G. C. Wood, "The Effect of Alternating Voltage on Aluminum Electrodes in Hydrochloric Acid", Corrosion Science, Vol.18, pp.721-746, 1978.
84. H. Zhong and T. Oki, "The Effect of Hydrochloric Acid Concentration and Solution Temperature on the Characteristics of Al Foil during AC Etching under Potential Control", 表面技術, Vol.46, pp. 270-275,1995.
85. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器",日本昱蓄電器工業株式會社 pp.230, 1985.
86. H.Uchi T.Kanno and R.S.Alwitt. “Structural Features of Crystalline
Aluminum Films”, Journal of The Electrochemical Society,Vol.
148,pp.17-23, 2001.
87. 日本輕金屬學會四十周年出版, "高純度アルミニウム", アルミニウムの組織と性質, pp.159-170, 1991.
88. G. J. Tibol and R. W. Hull, J. Electrochem. Soc., Vol. 111, No.12, p pp.1368-1371, 1964.
指導教授 歐炳隆(Bin-Lung Ou) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明