博碩士論文 93343015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.148.106.49
姓名 蔡逢哲(Feng-Che Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磨料噴射精微加工之研究
(A Study on Abrasive Jet Technology for Micro-Machining)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要研發一套磨料噴射精微拋光技術,並利用自行研發具滑動研磨功能之蠟砂,探討對不同SKD61模具鋼加工及形狀表面的拋光改善效果。經由實驗發現採用田口方法所獲得之磨料噴射最適參數水準組合,以#2000SiC與添加劑混合比例500: 1000: 1500(水蠟: 磨料: 水)條件下,可於90 min內將表面粗糙度7.74 μm Rmax的放電表面改善至0.45 μm Rmax,且表面呈現近似鏡面反射效果。對於2.32 μm Rmax開放式微槽、3.45 μm Rmax直線型封閉式微槽與3.58 μm Rmax曲線型封閉式微槽表面,以#3000SiC磨粒在相同加工條件下,可分別於30 min、60 min與60 min時,將表面改善至0.40 μm Rmax、0.43 μm Rmax與0.45 μm Rmax的拋光效果。同時研究創新以霧化法製作具滑動功能的複合磨料(#3000蠟砂),發現經磨料噴射後對於表面粗糙度3.26 μm Rmax的研磨表面,可於拋光時間45 min內,將表面改善至0.31 μm Rmax的鏡面效果;另外對於2.32 μm Rmax的開放式微槽、3.45 μm Rmax的直線型封閉式微槽與3.58 μm Rmax的曲線型封閉式微槽表面,分別於30 min、60 min和75 min時,可將表面改善至0.31 μm Rmax、0.35 μm Rmax與0.40 μm Rmax的表面拋光效果,證明磨料噴射拋光法結合蠟砂複合磨料,可明顯縮短拋光時間並獲得極佳的表面改善效果。
摘要(英) This study introduces an Abrasive Jet Polishing (AJP) technique to improve the polishing performance. Furthermore, a Gas Atomization technique is employed to fabricate Wax-coated #3000SiC particles, investigations to establish the optimal AJP parameters for the surface finishing of different SKD61 mold steel specimens shape and processed.
Taguchi design experiments are performed to identify the optimal AJP parameters when applied to the polishing of SKD61 mold steel specimens. Using #2000SiC particles were mixed with water wax and pure water in a ratio of 500: 1000: 1500 (Water Wax: SiC particles: Pure Water). Following 90 minutes of blasting, the surface roughness is improved from an initial value of 7.74 μm Rmax to 0.45 μm Rmax, thereby obtain a mirror-like surface finish. AJP polishing of the micro-grooving SKD61 surface, Linear type micro-channel SKD61 surface and Curvee type micro-channel SKD61 surface using #3000SiC particles mixed with water wax and pure water in the ratio 500:1000:1500 (Water Wax: SiC particles: Water) reduces the surface roughness from an initial value of Rmax = 2.32 μm, Rmax = 3.45 μm and Rmax = 3.58 μm to a final value of Rmax = 0.40 μm, Rmax = 0.43 μm and Rmax = 0.45 μm within 30 minutes, 60 minutes and 60 minutes, respectively. Gas Atomization system used in this study to fabricate the Wax-coated #3000SiC particles. AJP polishing of the ground SKD61 surface using wax-coated #3000SiC particles mixed with water wax and pure water in the ratio 500: 1000: 1500 (Water Wax: SiC particles: Water) reduces the surface roughness from an initial value of Rmax = 3.26 μm to a final value of Rmax = 0.31 μm within 45 minutes. In addition, using wax-coated #3000SiC particles of the micro-grooving SKD61 surface, Linear type micro-channel SKD61 surface and Curvee type micro-channel SKD61 surface reduces, the surface roughness from an initial value of Rmax = 2.32 μm, Rmax = 3.45 μm and Rmax = 3.58 μm to a final value of Rmax = 0.31 μm, Rmax = 0.35 μm and Rmax = 0.40 μm within 30 minutes, 60 minutes and 75 minutes, respectively. Overall, the results show that the use of wax-coated abrasive particles reduces the polishing time and achieves an improved surface finish.
關鍵字(中) ★ 霧化法
★ 磨料噴射加工
★ 放電加工
★ 田口品質工程
關鍵字(英) ★ Gas Atomization
★ Taguchi Method
★ Abrasive Jet Machining
★ Electrical Discharge Machining
論文目次 摘 要 i
Abstract ii
謝 誌 iv
目 錄 v
圖 目 錄 viii
表 目 錄 xiii
第一章 緒 論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 文獻回顧 6
1-3-1 放電表面改善 6
1-3-2 拋光技術 8
1-3-3 磨料噴射加工法 10
1-3-4 田口實驗計畫法 13
1-4 研究方法 15
1-4-1 實驗材料 16
1-5 本論文之構成 19
第二章 磨料噴射精微拋光系統之建構 21
2-1 前言 21
2-2 磨料噴射加工法基本原理 22
2-2-1 磨料噴射對延性工件材料移除機制 24
2-3 系統設計與建構 24
2-4 磨料噴射精微拋光系統 26
2-5 系統性能與加工特性分析 27
2-5-1 系統入出口壓力差異 29
2-5-2 乾式與濕式加工對表面粗糙度之影響 32
2-5-3 加工高度對磨料噴射加工能力之影響 34
2-6 結論 36
第三章 磨料噴射精微拋光法對於不同加工平面之改善 37
3-1 前言 37
3-2 放電加工原理 37
3-2-1 放電加工材料去除機制 39
3-3 實驗方法 41
3-4 結果與討論 42
3-4-1不同放電表面粗糙度對表面精微拋光之影響 42
3-4-2水溶性加工油添加劑對放電表面精微拋光之影響 47
3-4-3 不同磨料號數對放電表面精微拋光之影響 52
3-4-4 不同磨料種類對放電表面精微拋光之影響 58
3-4-5 表面特性探討 61
3-4-5-1 微硬度試驗 61
3-4-5-2表面微量元素分析 64
3-4-5-3 腐蝕試驗與再鑄層觀察 65
3-4-6水蠟添加劑對放電表面精微拋光之影響 67
3-4-7 不同磨料號數粒徑對放電表面精微拋光之影響 69
3-4-8水蠟添加劑對研磨表面精微拋光之影響 71
3-4-9 不同磨料號數對研磨表面精微拋光之影響 73
3-4-10 腐蝕試驗與截面觀察 76
3-5 結論 79
第四章 磨料噴射精微拋光法應用於自由曲面之精修 81
4-1 前言 81
4-2 實驗原理 82
4-3 實驗方法與材料 83
4-4 結果與討論 85
4-4-1 開放式微槽拋光 85
4-4-1-1 不同磨料號數對開放式微槽拋光改善效果 86
4-4-2 直線型封閉式微槽拋光 88
4-4-2-1 真空吸引力對直線型封閉式微槽拋光的影響 89
4-4-2-2 不同磨料號數對直線型封閉式微槽拋光的影響 90
4-4-3 曲線型封閉式微槽拋光 93
4-4-3-1 不同磨料號數對曲線型封閉式微槽拋光之影響 93
4-5 結論 96
第五章 蠟砂磨料研發與精微拋光效果探討 97
5-1 前言 97
5-2 霧化法原理 98
5-3 實驗方法與材料 99
5-4 結果與討論 100
5-4-1 蠟砂對研磨表面拋光之影響 100
5-4-1-1 蠟砂與不同號數單一材質SiC磨粒對於研磨表面改善效果 101
5-4-1-2 微硬度試驗 105
5-4-1-3 表面微量元素分析 107
5-4-1-4腐蝕實驗 109
5-4-2 蠟砂對開放式微槽拋光之影響 109
5-4-3 蠟砂對直線型封閉式微槽拋光之影響 111
5-4-4 蠟砂對曲線型封閉式微槽拋光之影響 114
5-5 結論 117
第六章 總 結 論 118
參考文獻 120
附錄A 磨料噴射加工參數最適化 130
作者簡介 138
參考文獻 1. 渡邊純二,「電子、光通訊用零件及結晶、陶瓷材料的超精密加工技術」,次世代磨粒加工技術研討會,中華民國磨粒加工學會,2000。
2. 張耿維,「磁力研磨與電解磁力研磨之拋光特性研究」,國立中央大學機械工程學系博士論文,2003。
3. L.C. Lim, L.C. Lee, Y.S. Wong, and H.H. Lu, “Solidification microstructure of electrodischarge machined surfaces of tool Steels”, Materials Science and Technology 7 (1991) 239–248.
4. L.C. Lee, L.C. Lim and Y.S. Wong, “Crack susceptibility of electrodischarge machined surfaces”, Journal of Materials Processing Technology 29 (1992) 213–221.
5. V.K. Jain, S.G. Adsul, “Experimental investigations into abrasive flow machining process”, International Journal of Machine Tools & Manufacture 40 (2000) 1103–1021.
6. R. Balasubramaniama, J. Krishnana and N. Ramakrishnan, “A study on the shape of the surface generated by abrasive jet machining”, Journal of Materials Processing Technology 121 (2002) 102–106.
7. J. Osyczka, J. Zimny, Zajac and M. Bielut, “An approach to identification and multicriterion optimization of EDM process”, Proceedings of the 23rd International Machine Tool Design and Research Conference, (1982) 291–296.
8. J.D. Ayers, K. Moore, “Formation of metal carbide powder by spark machining of reactive metals”, Metallurgical Transactions A 15 (1984) 1117–1127.
9. T. Tsutsui, T. Tamura, “Effect of the electro-discharge machined surface on the mechanical properties. On the surface defects and transverse rupture strength of cemented carbide”, Bulletin of the Japan Society of Precision Engineering 20 (1986) 60–61.
10. L.C. Lee, L.C. Lim and V. Narayanan, V.C. Venkatesh, “Quantification of surface damage of tool steels after EDM”, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
11. B.H. Yan, C.C. Wang, H.M. Chow and Y.C. Lin, “Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite”, International Journal of Machine Tools & Manufacture 40 (2000) 1403–1421.
12. H.M. Chow, B.H. Yan and F.Y. Hung, “Study of added powder in kerosene for the micro-slit machine of titanium alloy electro-discharge machining”, Journal of Material Processing Technology 101 (2000) 95–103.
13. Y.C. Lin, B.H. Yan and F.Y. Huang, “Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM”, Journal of Materials Processing Technology 115 (2001) 359–366.
14. Y.H. Guu, H. Hocheng, “Effects of workpiece rotation on machinability during electrical discharge machining”, Materials and Manufacturing Processes 16 (2001) 91–101.
15. B.H. Yan Y.C. Lin, F.Y. Huang and C.H. Wang, “Surface modification of SKD61 during EDM with metal powder in the dielectric”, Materials Transactions 42 (2001) 2597–2604.
16. Y.F. Tzeng, C.Y. Lee, “Effect of powder characteristics on electrodischarge machining”, International Journal of Advanced Manufacturing Technology 7 (2001) 586–592.
17. W.S. Zhao, Q.G. Meng and Z.L. Wang, “The application of research on powder mixed EDM in rough machining”, Journal of Materials Processing Technology 129 (2002) 30–33.
18. Y.H. Guu, H. Hocheng, C.Y. Chou and C.S. Deng, “Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel”, Materials Science and Engineering A3 (2003) 37–43.
19. P. Pec, E. Henriques, “Influence of silicon powder-mixed dielectric on conventional electrical discharge machining,” International Journal of Machine Tools & Manufacture 43 (2003) 1465–1471.
20. K.M. Shu, G.C. Tu, “Study of electrical discharge grinding using metal matrix composite electrodes”, International Journal of Machine Tools & Manufacture 43 (2003) 845–854.
21. F. Klocke, D. Lung, G. Antonoglou and D. Thomaidis, “The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies”, Journal of Materials Processing Technology 149 (2004) 191–197.
22. A. Curodeau, M. Richard and L. Frohn-Villeneuve, “Molds surface finishing with new EDM process in air with thermoplastic composite electrodes,” Journal of Materials Processing Technology 149 (2004) 278–283.
23. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique”, Journal of Materials Processing Technology 149 (2004) 289–295.
24. W. Theisen, A. Schuermann, “Electro discharge machining of nickel–titanium shape memory alloys”, Materials Science and Engineering A378 (2004) 200-204.
25. B. Mohana, A. Rajadurai and K. G. Satyanarayana, “Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode”, Journal of Materials Processing Technology 153 (2004) 978–985.
26. H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura and M. Kunieda, “High-quality cutting of polished single-crystal silicon by wire electrical discharge machining”, Article Precision Engineering 29 (2005) 423-430.
27. S.C. Tam, “Electrochemical polishing of Biomedical Titanium Orifice Rings,” Journal of Materials Processing Technology 35 (1992) 83–91.
28. K. Kumakura, T. Kitajima, T. Uematsu and N. Kaneko, “A machining center does the unexpected, polishing surfaces and dressing superabrasive grinding wheels”, American Machinist 141 (1997).
29. J.D. Kim, Y.H. Kang, Y.H. Bae and S.W. Lee, “Development of a magnetic abrasive jet machining system for precision internal polishing of circular tubes Source”, Journal of Materials Processing Technology 71 (1997) 384–393.
30. E.S. Lee, “Machining Characteristics of the Electropolishing of Stainless Steel (STS316L)”, The International Journal of Advanced Manufacturing Technology 16 (2000) 591–599.
31. H. Ramasawmy, K. Stout and L. Blunt, “Effect of secondary processing on EDM surfaces”, Surface Engineering 16 (2000) 501–505.
32. V.K. Jain, P. Kumar, P.K. Behera and S.C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear 250 (2001) 384–390.
33. J.D. Kim, “Polishing of ultra-clean inner surfaces using magnetic force”, The Int. J. of Advanced Manufacturing Technology 21 (2003) 91–97.
34. S.J. Lee, J.J. Lai, “The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel”, Journal of Material Processing Technology 140 (2003) 206–210.
35. S. Yin, T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture 44 (2004) 1297–1303.
36. H. Yamaguchi, T. Shinmura, “Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process”, Precision Engineering 28 (2004) 135–142.
37. J.Y. Choi, H.D. Jeong, “A study on polishing of molds using hydrophilic fixed abrasive pad”, International Journal of Machine Tools & Manufacture 44 (2004) 1163–1169.
38. L.S. Andrade, S.C. Xavier, R.C. Rocha-Filho, N. Bocchi and S.R. Biaggio, “Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration”, Electrochimica Acta 50 (2005) 2623–2627.
39. Y. Unoa, A. Okadaa, K. Uemurab, P. Raharjo, T. Furukawa and K. Karato, “High-efficiency finishing process for metal mold by large-area electron beam irradiation”, Precision Engineering 29 (2005) 449–455.
40. I.M. Hutchings, N.H. Macmillan and D.G. Rickerby, “Further studies of the oblique impact of a hard sphere against a ductile solid”, International Journal of Mechanical Sciences 23 (1981) 639–646.
41. E. Belloy, A. Sayah and M.A.M. Gijs, “Powder blasting for three-dimensional microstruturing of glass”, Sensors and Actuators A 86 (2000) 231–237.
42. P.J. Slikkerveer, P.C.P. Bouten, F.H. in’t Veld and H. Scholten, “Erosion and damage by sharp particles”, Wear 217 (1998) 237–250.
43. E. Belloy, S. Thurre, E. Walckers, A. Sayah and M.A.M.Gijs, “The introduction of powder blasting for sensor and microsystem applications”, Sensors and Actuators A 84 (2000) 330–337.
44. M.W. Sin, J.G. Song, “Study on the photoelectrochemical etching process of semiconducting 6H-SiC wafer”, Materials Science and Engineering B 95 (2002) 191–194.
45. H. Wensink, H.V. Jansen, J.W. Berenschot and M.C. Elwenspoek, “Mask materials for poeder blasting”, Journal of Micromechanics and MicroEngineering 10 (2000) 175–180.
46. H. Wensink, H.V. Jansen, J.W. Berenschot and M.C. Elwenspoek, “High Resolution Powder Blast Micromachining”, Micro Electro Mechanical Systems (2000) 769–774.
47. S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek and A. Vandenberg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips withintegrated conductivity sensors”, Journal of Micromechanics and MicroEngineering 11 (2001) 386–389.
48. E. Belloy, A. Sayah and M.A.M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials”, Sensors and Actuators A 92 (2001) 358-363.
49. M. Wakuda, Y. Yamauchi and S. Kanzaki, “Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials”, Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 193–198.
50. J.A. Plaza, M.J. Lopez, A. Moreno, M. Duch and C. Cané, “Definition of high aspect ratio glass columns”, Sensors and Actuators A105 (2003) 305–310.
51. D. Jianxin, F. Yihua, D. Zeliang and S. Peiwei, “Wear behavior of ceramic nozzles in sand blasting treatments”, Journal of the European Ceramic Society 23 (2003) 323–329.
52. M. Wakuda, Y. Yamauchi and S. Kanzaki, “Material response to particle impact during abrasive jet machining of alumina ceramics”, Journal of Materials Processing Technology 132 (2003) 177–183.
53. D.S. Park, M.W. Cho, H. Lee and W.S. Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234–240.
54. J. Qua, A. J. Shih, R.O. Scattergood and J. Luo, “Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC–Co composite”, Journal of Materials Processing Technology 166 (2005) 440–448.
55. A. Sayah, V.K. Parashar, A.G. Pawlowski and M.A.M. Gijs, “Elastomer mask for powder blasting microfabrication”, Sensors and Actuators A125 (2005) 84–90
56. M. Junkar, B. Jurisevic, M. Fajdiga and M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112.
57. Y.S. Liao, L.C. Chen, “Determination of mask opening size in creating a fluid hole on brittle material by double-side sand blasting”, The International Journal of Advanced Manufacturing Technology 29 (2006) 511–517.
58. M. Barletta, V. Tagliaferri, “Development of an abrasive jet machining system assisted by two fluidized beds for internal polishing of circular tubes”, International Journal of Machine Tools & Manufacture 46 (2006) 271–283.
59. A. Hascalik, U. Caydas and H. Gurun, “Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy”, Materials and Design 28 (2007) 1953–1957.
60. D. Jianxin, W. Fengfang and Z. Jinlong, “Wear mechanisms of gradient ceramic nozzles in abrasive air-jet machining”, International Journal of Machine Tools & Manufacture 47 (2007) 2031–2039.
61. 林江龍,「放電加工電極消耗可靠度與製程參數最佳化研究」,國立中央大學機械工程學系博士論文,1999。
62. M.S. Phadke, “Quality engineering using robust design”, AT& T Laboratories (1989).
63. F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, NeuralComputing 7 (1995) 225–245.
64. W.H. Yang, Y.S. Tarng, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology 84 (1998) 122-129.
65. J.H. Lau, C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing”, IEEE Transactions on Electronics Packaging Manufacturing 233 (2000) 219–225.
66. A. Mertol, “Application of the Taguchi Method to Chip Scale Package (CSP) Design”, IEEE Transactions on Advanced Packaging 23 (2000) 266–276.
67. G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, (2001) 1–6.
68. Y.S. Tarng, S.C. Juang and C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing”, Journal of Materials Processing Technology 128 (2002) 1–6.
69. J.M. Liang, P.J. Wang,” Self-learning control for injection molding based on neural networks optimization”, Journal of Injection Molding Technology 6 (2002) 58–72.
70. J.A. Ghani, I.A. Choudhury and H.H. Hassan, “Application of Taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology 145 (2004) 84–92.
71. 周祥東,「系統工程之回顧與前瞻」,第一屆系統工程講座講義,國防大學,2000。
72. 錢筑萍,「系統工程在產品開發過程之應用」,量測資訊第49期,1996。
73. E. Belloy, A. Sayah and M.A.M. Gijs, “Micromachining of glass inertial sensor”, Journal of Microelectromechanical Systems 11 (2002) 85–90.
74. B.R. Lawn, A.G. Evans and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, Journal of the American Ceramic Society 63 (1980) 574–581.
75. D.B. Marshall, “Geometrical effects in elastic/plastic indentation”, Journal of the American Ceramic Society 64 (1981) 57–60.
76. P.J. Slikkerveer, F.H. in’t Veld, “Model for patterned erosion”, Wear (1999) 337–386.
77. J.L. Lin, K.S. Wang, B.H. Yan and Y.S. Tarng, “Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology 102 (2000) 48–55.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2008-6-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明