博碩士論文 93343032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.227.105.140
姓名 張庭綱(Ting-kang Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 直流、脈衝微電鍍之質傳與其微析鍍合金之熱電性質
(On the mass transport of direct and pulse microplating andthe thermoelectric property of the micrometer alloying deposit)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用直流與脈衝兩種方式微陽極導引電鍍法,用以製備微米級之鎳與銅質微柱。析鍍過程中,採用微細參考電極使其接近微柱成長區,量取局部之電位,並紀錄陰陽兩極間電流值。由局部之電位變化可以推算離子濃度,並計算出離子補充之質傳率,電流之大小則可用來計算金屬離子的消耗率。無論是直流或脈衝微電鍍,其結果均顯示:微柱外型與內部結構,深受偏壓以及工作比(duty cycle)之影響,此種偏壓與工作比之影響,實與離子質傳速率與消耗速率之平衡有關。當離子補充率大於離子消耗率時,微柱之外觀平滑且內部緻密;反之,得出形貌粗糙內部多孔性之結構。
若以微電鍍技術析鍍銅鎳合金微柱,其合金微柱成分受到為偏壓與銅離子濃度兩者影響,偏壓增大鎳含量增多;反之,則銅含量增加。鍍浴中銅離子濃度越高,微柱中銅的成分越高;反之,則銅成分減少。含銅離子0.012 M之鍍浴中,在偏壓3.8V可析鍍出與商用銅鎳合金成份比例相近之合金。其一合金與銅微柱接合改為可用來測量微區域之溫度熱電材料。
間歇式微電鍍製程由於電場變動大,析鍍品質不易控制,若輔以視覺控制與影像處理,做為回饋訊號之依據,則可提供穩定之電場變化,成功地析鍍出外型平整內部緻密之微柱。
摘要(英) Micrometer copper and nickel columns were fabricated by direct and pulse current micro anode guided electroplating (MAGE) in this study. A micro reference electrode coupled with potentiostat was used to probe the local potential during electrodeposition and record the deposition current. The local concentration of metallic ions can be estimated from the local potential probed to calculate the supplying rate of the ions. The consumption rate was calculated from the deposition current. The surface morphology and the internal structure of the deposits were majorly determined by the electric bias and duty cycle due to their influence on the rate of electrical discharge and the rate of mass transport of the metallic ions. The metal column could be grown with a smooth surface and compact internal as the supplying rate of metallic ions (mass transport) is sufficient to compensate the consuming rate of the ions (caused by electrical discharge). On the other hand, the metal column would be grown with rough surface and porous internal.
The alloy Ni/Cu columns also could be fabricated by MAGE process. The composition of Ni-Cu alloys was determined by the applied voltage and the concentration of cupric ions in the bath. With higher voltage applied, the Ni-content in the alloy is higher; increasing the concentration of cupric ions, the Ni-content in the alloy is becoming less. A micro column alloy with similar composition to the commercial Ni-Cu thermocouple was fabricated in the citrate bath containing 0.012M Cu2+ at 3.8V.
Continuous MAGE was developed by means of visual control, image process and current feedback to maintain a steady strength of electric field. This method is better than intermittent MAGE to fabricate microcolumns with good quality.
關鍵字(中) ★ 微金屬柱
★ 微電鍍
★ 微陽極導引電鍍
★ 局部電化學沉積
★ 微熱偶
關鍵字(英) ★ MAGE
★ continuous MAGE
★ micro column
★ micro therm
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XIV
符號表 XV
第一章 前言 1
1-1 研究背景 1
1-2 研究動機與目的 2
第二章 文獻回顧及原理學說 4
2-1 微電鍍原理 4
2-2 文獻回顧 5
2-2-1 國外發展 5
2-2-2 國內相關研究 7
2-3 電場原理基礎 8
2-4 電位與離子濃度之關係 10
2-5 質量傳輸程序 11
2-6 電荷交換程序 13
2-7 電結晶化程序 13
2-8 電極與電位 14
2-9 合金電鍍原理 16
2-10 金屬之熱電性質Seebeck effect 17
第三章 實驗方法與步驟 20
3-1 研究流程圖 20
3-2 微電鍍裝置邏輯方塊圖 20
3-3 實驗前製程 21
3-3-1 微陽極製作 21
3-3-2 陰極製作 21
3-3-3 電鍍液泡製 22
3-3-4 電解槽製作 22
3-4 實驗方法 23
3-4-1 微電鍍在不同偏壓下鍍鎳的實驗設置 23
3-4-2 脈衝微電鍍下的實驗設置 23
3-4-3 微電鍍製作微熱偶之實驗設置 24
3-4-4 連續式微電鍍之實驗設置 24
3-5 實驗儀器 25
3-5-1 恆電位儀 25
3-5-2 電源供應器 26
3-5-3 脈衝電源供應器 26
3-5-4 單軸微動機構 26
3-5-5 步進馬達驅動器 26
3-5-6 控制裝置電腦 27
3-5-7 電流訊號之量測 27
3-5-8 電壓輸出與訊號量測 27
3-5-9 視覺控制用CCD相機 28
3-6 檢測及分析儀器 28
3-6-1 光學顯微鏡 28
3-6-2 掃描式電子顯微鏡 28
3-6-3 離子偶合電漿 29
第四章 結果與討論 30
4-1 微鎳柱之析鍍與質傳探討 30
4-1-1 兩極偏壓對微柱外觀與其橫截面形貌之影響 30
4-1-2 兩極偏壓對微柱平均成長速率與平均析鍍電流影響 31
4-1-3 微電鍍局部鎳離子濃度的計算與探討 32
4-1-4 離子補充與消耗質傳率的計算 33
4-1-5 質傳率的探討 38
4-2 脈衝微電鍍析鍍微銅柱與質傳探討 41
4-2-1 兩極偏壓與工作比對微柱外觀與其橫截面形貌影響 41
4-2-2 析鍍電流與局部電位之監測 43
4-2-3在局部析鍍範圍的銅離子計算 44
4-2-4在脈衝微電鍍在局部析鍍範圍的銅離子補充率 47
4-2-5在脈衝微電鍍在局部析鍍範圍的銅離子消耗率 48
4-2-6脈衝微電鍍質傳補充率與質傳率的比較 49
4-3 銅鎳合金微柱製作與熱電性質量測 51
4-3-1 銅離子含量對鎳銅合金微柱的表面形貌影響 51
4-3-2偏壓對鎳銅合金微柱的表面形貌影響 52
4-3-3 鎳銅合金微柱的組成分析 52
4-3-4 鎳與銅共同析鍍的探討 54
4-3-5 合金微柱中鎳/銅的重量百分比預測 56
4-3-6 由銅鎳合金微柱與銅微柱製作的熱電性質元件 57
4-4 連續式微電鍍 60
4-4-1 間歇式與連續式微電鍍對微柱外觀與其橫截面形貌之影響 60
4-4-2 間歇與連續式微電鍍的電場模擬 61
第五章 結論 63
第六章 未來展望 65
參考文獻 66
個人簡歷 117
參考文獻 參考文獻
[1] J. D. Madden and I. W. Hunter, “Three Dimensional Micro-fabrication by localized Electrochemical Deposition”, Journal of MEMS. vol. 5 No.1, pp24-32, Mar 1996.
[2] I. W. Hunter , S. R. Lafontaine and J. D. Madden, “Three-Dimensional Micro-fabrication by localized Electrochemical Deposition and Etching”, United States Patent 5641391, Jun.24 1997。
[3] E. M. El-Giar, U. Cairo and D. J. Thomson “Localized electrochemical plating of interconnects for microelectronic” Proc. IEEE Conf. on Communications, Power and Computing vol 22–23 pp 327–32, 1997.
[4] S. H. Yeo, J. H. Choo and K. S. Yip “Localized electrochemical deposition—the growth behavior of nickel micro-columns” Proc. SPIE 4174 30–39, 2000.
[5] S. H. Yeo, J. H. Choo and K. H. Sim “On the effects of ultrasound vibration on localized electrochemical deposition” J. Micromech. Microeng. 12 271–279, 2002.
[6] S. H. Yeo and J. H. Choo “Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition” J. Micromech. Microeng. 11 435–442, 2001.
[7] J. H. Choo, S. H. Yeo and F. F. Tan “Flexible tooling for localized electrochemical deposition with wire-electrodischarge grinding” Micosyst. Technol. 10 127–136, 2004.
[8] J. H. Choo and S. H. Yeo “Enhancement of spatial resolution of microfabricated columns using localized electrochemical deposition” Proc. SPIE 4236 260–71, 2001.
[9] R. A. Said “Adaptive tip-withdrawal control for reliable micro-fabrication by localized electro-deposition” IEEE J. MEMS 13 822–832, 2004.
[10] R. A. Said “Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling” Nanotechnology 14 523–531, 2003.
[11] R. A. Said “Localized electro-deposition (LED): the march toward process development” Nanotechnology 15 S649–659, 2004.
[12] R. A. Said “Shape formation of microstructures fabricated by localized electrochemical deposition” J. Electrochem. Soc. 150 C549–557, 2003.
[13] R. A. Said “Localized electrochemical deposition of copper microstructures (II): artifacts of electrode-tip geometry” Proc. Electrochem. Soc. 8 112–119, 2001.
[14] S. K. Seol, J. T. Kim, J. H. Je , Y. Hwu and G. Margaritondo “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition” Electrochem. Solid-State Lett. 10(5) C44-C46, 2007.
[15] S. K. Seol et al “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition” Electrochem. Solid-State Lett. 7–9 C95–97, 2004.
[16] S. K. Seol, J. T. Kim, J. H. Je, Y. Hwu, and G. Margaritondo “Three-Dimensional (3D) Polypyrrole Microstructures with High Aspect Ratios Fabricated by Localized Electropolymerization” Macromolecules, 41 (9), 3071-3074, 2008.
[17] C. S. Lin, C. Y. Lee, J. H. Yang and Y. S. Huang “Improved copper microcolumn fabrication by localized electrochemical deposition” Electrochem. Solid-State Lett. C125–129, 2005
[18] C. Y. Lee, C. S. Lin, J. H. Yang and B. R. Lin Localized electrochemical deposition process improvement by using different anodes and deposition directions J. Micromech. Microeng. 18 105008, 2008.
[19] J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating” J. Micromech. Microeng. 15 2405–2413, 2005.
[20] T. K. Chang, J. C. Lin, J. H. Yang, P. C. Yeh, D. L. Lee and S. B. Jiang “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition” J. Micromech. Microeng. 17 2336–43, 2007.
[21] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee and S. B. Jiang “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, J. Micromech. Microeng. 19 015030, 2009.
[22] J. C. Lin, S. B. Jiang, P. C. Yeh, S K Liao, T. K. Chang and J. H. Yang “The effect of electric field on fabricating columns by microanode guided electroplating (MAGE) process” Automation Conf. (Taichung, Taiwan, May 2005)
[23] J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai and S. B. Jiang “Assessing the degree of localization in localized electrochemical deposition of copper” J. Micromech. Microeng. 18 055023, 2008.
[24] Bhag Singh Guru, Hüseyin R. Hiziroglu “Electromagnetic Field Theory Fundamentals 2nd Edition”, CAMBRIDGE UNIVERSITY PRESS.
[25] J. B. Allen, R. Faulkner Larry Electrochemical methods fundamentals and applications 2nd Edition, JOHN WILEY & SONS, INC.
[26] W. S. Tait, PH.D., “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, PairODocs Publications, 1994。
[27] Brenner, Abner, “Electrodeposition of alloys principle and practice”, New York :Academic Press,1963.
[28] Y. Y. Ramona, “Electrodeposition of Copper-Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode I.Experiment Results”, J. Electrochem. Soc:Electrochemical Science and Technology, Vol.135 No.12 pp.2964-2971, 1988.
[29] T. J. Seebeck "Magnetische Plarisation der Matalle und Erze durch Temperatur-Differenz. Abhandlungen der Preussischen Akad, Wissenschaften”, pp 265-373, 1823.
指導教授 林景崎(Jing-chie Lin) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明