博碩士論文 943203010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.117.168.85
姓名 周佳樺(Chia-Hua Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同負載模式對錫-銀-銅無鉛銲錫接點低週疲勞行為之影響
(Low Cycle Fatigue Behavior of Lead-Free Sn-Ag-Cu Solder Joint under Various Loading Modes)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討0 度(純拉伸負載模式)、45 度(混合負載模式)以及90 度(純剪力負載模式)三種不同受力模式對Sn-3.5Ag-0.5Cu 無鉛銲錫接點試片低週疲勞行為的影響。並進一步和文獻中塊材型式的試片在相同條件下所測得的實驗結果做比較。此外,亦利用掃描式電子顯微鏡(SEM)觀察表面裂縫與破斷面,以了解此款無鉛銲錫接點之疲勞破裂機制。
實驗結果顯示,在各種位移振幅、負載模式的試驗條件組合中,von Mises 等效應變可以有效的將三種不同負載模式下的低週疲勞壽命做有效的統合。在本實驗中所使用臨界平面觀念為主的KBM 參數以及使用von Mises 等效應變之Basquin-Coffin-Manson 方程式都能針對在不同負載模式下的低週疲勞行為做出很好的整合性描述。將接點試片在0 度受力模式下和塊材在相同情形下作等效應變-壽命曲線分析比較,發現在低應變振幅下接點有比較好的疲勞壽命,但在高應變振幅下則得到相反的結果。銲點試片和塊材試片所顯示的應力振幅下降曲線趨勢非常相近。
由SEM 觀察得知,微小的裂縫起始於銅片和錫球之間介面處的某些微孔洞所在位置。微裂縫以及微孔洞的相互連結是導致疲勞裂縫生成與成長的主因。而在不同負載模式下,試片斷裂的位置都位於銅片和錫球間的介面處,這是因為該介面為試片抵抗疲勞損害最弱的地方。
摘要(英) The purpose of this study is to investigate the LCF properties of solder joints made of a promising lead-free solder alloy, Sn-3.5Ag-0.5Cu. Displacement-controlled LCF tests were conducted on the solder joint specimens under various loading conditions, including purely axial loading, purely shear loading and mixed-mode loading. The effect of multiaxial loading on the fatigue life and fracture mode was characterized. In addition, the difference in the uniaxial LCF life between solder joints and bulk solders was discussed by making a comparison with a previous study.
Experimental results showed the von Mises equivalent strain was a superior parameter to the maximum normal strain and the maximum shear strain in correlating the LCF life of solder joints under various loading modes. Several fatigue models were applied to describe the LCF lives of the given solder joint specimens subjected to different modes of loading. Among the applied approaches, KBM parameter and the von Mises equivalent strain provided the best unified correlation with the fatigue life of solder joint at all given loading modes through a single power law or a double law relationship.
Although a similar trend of load drop curve to that of the bulk solder was found for the solder joint, the LCF behavior under purely axial loading between the solder joint and bulk solder was different. Based on the fractography analysis results, the loading mode did not have a significant influence on the cracking path of the solder joint, as the fatigue fracture always occurred at the interface between the solder and copper pad for all the given loading modes.
關鍵字(中) ★ 低週疲勞
★ 無鉛銲錫
關鍵字(英) ★ low-cycle fatigue
★ Lead-free solder
論文目次 LIST OF TABLES...............................................................................................................III
LIST OF FIGURES.............................................................................................................IV
1. INTRODUCTION.......................................................................................................1
1.1 Lead-Free Solders...............................................................................................1
1.2 Sn-Ag and Sn-Ag-Cu Lead-Free Solder Alloys .................................................3
1.3 Mechanical Failure of Solders............................................................................4
1.4 Fatigue Models of Solder Joints .........................................................................5
1.4.1 Low Cycle Fatigue Models for Mixed Loading ....................................6
1.4.2 Fatigue of Solders and Solder Joints under Mixed-mode
Loading................................................................................................11
1.5 Purpose and Scope............................................................................................12
2. EXPERIMENTAL PROCEDURES..........................................................................14
2.1 Material and Specimen .....................................................................................14
2.2 Low-Cycle Fatigue Test....................................................................................15
2.3 Fractography and Crack Analyses ....................................................................16
3. RESULTS AND DISCUSSION ................................................................................18
3.1 Low Cycle Fatigue Properties of Solder Joints ................................................18
3.2 Low Cycle Fatigue Life Models.......................................................................20
3.3 Comparison of Low Cycle Fatigue Behavior Between Solder Joint and Bulk
Solder................................................................................................................24
3.4 Fractography Analysis ......................................................................................26
4. CONCLUSIONS.......................................................................................................29
REFERENCES....................................................................................................................30
TABLES ..............................................................................................................................34
FIGURES ............................................................................................................................36
參考文獻 1. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials
Science and Engineering, Vol. 27, 2000, pp. 95-141.
2. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of
Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
3. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center
for Manufacturing Sciences, Michigan, 1997.
4. E. P. Wood, “In Search of New Lead-Free Electronic Solders,” Journal of Electronic
Materials, Vol. 23, 1994, pp. 709-714.
5. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free
Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
6. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment
Aware Manufacturing of Electrics Assemblies by Lead-Free Solderings,” pp. 98-104
in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe,
Cambridge, 1999.
7. Report on Research and Development on Lead-Free Soldering, Japan Electronic
Industry Development Association, Tokyo, 2000.
8. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process
Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu
Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
6. M. McCormack and S. Jin, “Improve Mechanical Properties in New, Pb-Free Solder
Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
10. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy
with Superior Mechanical-Properties,” Applied Physics Letters, Vol. 63, 1993, pp.
15-17.
11. IPC Roadmap: A guide for Assembly of Lead-Free Electronics, 4th Draft, IPC,
Northbrook, IL, June, 2000.
12. F. Ochoa, J. J. Williams, and N. Chawla, “Effects of Cooling Rate on the
Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of
Electronic Materials, Vol. 32, 2003, pp. 1414-1420.
13. 菅沼 克昭, 鉛      付 技術, 工業調查會, 日本, 2003. (日文)
14. D. W. Henderson, T. Gosselin, and A. Sarkhel, “Ag3Sn Plate Formation in the
Soldification of Near Eutectic Sn-Ag-Cu Alloys,” Journal of Material Research, Vol.
17, 2002, pp. 2775-2778.
15. L. Ye, Z. H. Lai, J. Liu, and A. Thoen, “Microstructure Investigation of
Sn-3.5Ag-0.5Cu and Sn-3.5Ag-0.5Cu-0.5Bi Lead-Free Solders,” Soldering and
Surface Mount Technology, Vol. 13, 2001, pp. 16-20.
16. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at
Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp.
1178-1183.
17. S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation
Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic
Materials, Vol. 30, 2001, pp. 1197-1205.
18. D. J. Xie and Y. C. Chan, “Fatigue Life Estimation of Surface Mount Solder Joints,”
IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.
19, 1996, pp. 669-678.
19. X. Q. Shi, H. L. J. Pang, W. Zhou, and Z. P. Wang, “Low Cycle Fatigue Analysis of
Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal
of Fatigue, Vol. 22, 2000, pp. 217-228.
20. X. Chen, J. Song, and K. S. Kim, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb
Solder Under Proportional and Non-Proportional Loading,” International Journal of
Fatigue, Vol. 28, 2006, pp. 757-766.
21. J. H. L. Pang, B. S. Xiong, and T. H. Low, “Low Cycle Fatigue of lead Free
99.3Sn-0.7Cu Solder Alloy,” International Journal of Fatigue, Vol. 26, 2004, pp.
865-872.
22. H.-T. Lee, H.-S. Lin, C.-S. Lee, and P.-W. Chen , “Reliability of Sn-Ag-Sb Lead-Free
Solder Joints,” Materials Science and Engineering A, Vol. 407, 2005, pp. 36-44.
23. J. J. Sundelin, S. T. Nurmi, T. K. Lepisto, and E. O. Ristolainen, “Mechanical and
Microstructural Properties of SnAgCu solder Joints,” Materials Science and
Engineering A, Vol. 420, 2006, pp. 55-62.
24. C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, “Comparison of Isothermal
Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders,”
Materials Science and Engineering A, Vol. 394, 2005, pp. 20-27.
25. T.-S. Park and S.-B. Lee, “Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions,” Journal of Electronic Packaging,
Vol. 127, 2005, pp. 237-244.
26. A. U. Telang and T. R. Bieler, “Characterization of Microstructure and Crystal
Orientation of the Tin Phase in Single Shear Lap Sn-3.5Ag Solder Joint Specimens,”
Scripta Materialia, Vol. 52, 2005, pp. 1027-1031.
27. B. L. Chen and G. Y. Li, “Influence of Sb on IMC Growth in Sn-Ag-Cu-Sb Pb-Free
Solder Joints in Reflow Process,” The Solid Films, Vol. 462, 2004, pp. 395-401.
28. X. Deng, R. S. Sidhu, P. Johnson, and N. Chawla, “Influence of Reflow and Thermal
Aging on the Shear Strength and Fracture Behavior of Sn-3.5Ag Solder Cu Joints,”
Metallurgial and Materials Transactions A, Vol. 36A, 2005, pp. 55-64.
29. H. T. Lee and Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle
Enhanced Sn-Ag Composite Solder Joints,” Material Science and Engineering A, Vol.
419, 2006, pp. 172-180.
30. W. W. Lee, L. T. Nguyen, and G. S. Selvaduray, “Solder Joint Fatigue Models:
Review and Applicability to Chip Scale Packages,” Microelectronics Reliability, Vol.
40, 2000, pp. 231-244.
31. J. Liang, N. Dariavach, G. Barr, and Z. Fang, “Effect of Strain Rates and Biaxial
Stress Conditions on Plastic Yielding and Flow Stress of Solder Alloys,” Journal of
Electronic Materials, Vol. 35, 2006, pp. 372-379.
32. X. Chen, D. Jin, M. Sakane, and T. Yamamoto, “Multiaxial Low-Cycle Fatigue of
63Sn-37Pb Solder,” Journal of Electronic Materials, Vol. 34, 2005, pp. l1-l6.
33. X. Chen, J. Song, and K. S. Kim, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb
Solder under Uniaxial and Torsional Loading,” International Journal of Fatigue, Vol.
28, 2006, pp. 767-776.
34. L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile
Metal,” Transactions of ASME, Vol. 76, 1954, pp. 931-950.
35. S. S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat
Transfer Symposium, University of Michigan Engineering Research Institute, 1953,
pp. 9-75.
36. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, Vol. 9, 1986, pp. 423-432.
37. M. W. Brown and K. J. Miller, “A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions,” Proceedings of the Institution of Mechanical Engineers,
Vol. 187, No. 65, 1973, pp. 745-755.
38. F. A. Kandil, M. W. Brown, and K. J. Miller, “Biaxial Low-Cycle Fatigue Fracture of
316 Stainless Steel of Evaluated Temperatures,” pp. 203-210 in Mechanical Behavior
and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The
Metals Society, London, 1982.
39. J. D. Morrow , “Cyclic Plastic Strain Energy and Fatigue of Metals,” pp. 45-87 in
Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Society
for Testing and Materials, Philadephia, USA, 1965,
40. B. L. Lee, K. S. Kim, and K. M. Nam, “Fatigue Analysis under Variable Amplitude
Loading Using an Energy Parameter,” International Journal of Fatigue, Vol. 25,
2003, pp.621-631.
41. X. Chen, S. Xu, and D. Haung, “Critical Plane Strain Energy Density Criterion of
Multi Axial Low Cycle Fatigue Life under Non-Proportional Loading,” Fatigue and
Fracture Engineering of Materials and Structures, Vol. 22, 1999, pp.679-686.
42. C.-M. Huang, “Low-Cycle Fatigue of Sn-3.5Ag-0.5Cu Lead-Free Solder under
Various Loading Conditions,” M.S. Thesis, National Central University, Jhong-Li,
Taiwan, 2005.
43. M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and
Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.
1155-1162.
44. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A.
Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder
Alloys,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1122-1136.
指導教授 林志光(Chih-Kuang (Jack) Lin) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明