博碩士論文 943203018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.144.233.89
姓名 廖文甲(Wen-Chia Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氮矽基鍵合之研究
(Silicon Nitride to Silicon Nitride Bonding)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 以氫離子擴散機制製作單晶矽薄膜在石英上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 晶圓鍵合發展的目標,就是希望能讓所有的材料間,不需任何的黏著層,即可有強大的黏結能力將兩種不同屬於不同的材料接合。在已經發展的晶圓鍵合技術裡,包含濕式活化輔助鍵結、陽極鍵結、電漿活化輔助鍵結、真空鍵結等等,不管任何的鍵結方式,都必須再靠退火製程來提升鍵結強度,也因此,熱應力便成為了一個棘手的問題。
本論文的重點旨在討論利用電漿活化輔助鍵結的方式,執行氮矽基材料間的直接鍵合;實驗分成三大部分,首先討論以RIE產生氮電漿活化氮化矽表面而得的表面粗糙度值;其次,架構在先前的討論上,執行Si3N4 –Si3N4薄膜的直接鍵合,並取得最佳的鍵結狀況。而後,討論鍵結後試片在退火時過程中的劣化現象,並提出解決得方案。
摘要(英) Wafer bonding is a novel technology to bond two different wafers by no any adhesive layer. Various methods have been developed such as chemical activaion, anodic bonding, plasma activation, vacum bonding, etc. Even this, we still cannot get strongly bonding strength without annealing process. The temperature of annealing process is usually too high to let bonding failure by themal stress. So, how to get the high bonding strength with low annealing temperature becomes an important topic today.
This study provided a method to directly bond the wafers there were silicon nitride thin film had been deposited on and get strongly bonding strength at low temperature. There are three main developments in this study. First, the surface roughness of silicon nitride resulted from using RIE-generated N2-plasma to activate that was discussed. Second, in order to obtain the optimum bonding result, direct Si3N4- Si3N4 bonding can be performed by above discussions. Finally, some solutions have been suggestted to improve degrading phenomenon of bonding interface formed during annealing process.
關鍵字(中) ★ 氮化矽
★ 電漿活化
★ 晶圓鍵合
關鍵字(英) ★ plasma activation
★ wafer bonding
★ silicon nitride bonding
論文目次 摘要 ----------------------------------------------------Ⅰ
英文摘要 ----------------------------------------------- Ⅱ
誌謝 --------------------------------------------------- Ⅲ
總目錄 ------------------------------------------------- Ⅳ
圖目錄 ------------------------------------------------- Ⅶ
表目錄 ------------------------------------------------- Ⅹ
第一章 前言 -------------------------------------------- 1
1.1 晶圓鍵合的定義 ---------------------------------- 1
1.2 晶圓鍵合計數之應用 ------------------------------ 2
1.3 研究動機 ---------------------------------------- 3
第二章 文獻回顧 ---------------------------------------- 5
2.1 電漿活化對表面的影響 ---------------------------- 5
2.1.1 電漿活化的清潔作用 --------------------------- 5
2.1.2 電漿活化導致表面懸浮見數目的增加 ------------- 6
2.1.3 表面化合物的形成 ----------------------------- 7
2.1.4 增加表面粗糙度 ------------------------------- 8
2.2 電漿活化中對鍵結有影響之因子 --------------------- 8
2.2.1 電漿活化過程之可變因子 ----------------------- 9
2.2.2 電漿活化後表面鍵結前的處理 ------------------- 10
2.2.3 預鍵結後退火溫度與時間的影響 ----------------- 12
2.3 氮化矽薄膜的性質及其應用 ------------------------ 13
第三章 實驗方法與步驟 ---------------------------------- 28
3.1 試片準備 ---------------------------------------- 28
3.2 電漿活化 ---------------------------------------- 29
3.2.1 反應式離子蝕刻機(RIE)----------------------- 29
3.2.2 電漿活化步驟 --------------------------------- 30
3.3 實驗結果測試方法介紹 ---------------------------- 30
3.3.1 鍵結狀況觀測 --------------------------------- 30
3.3.2 表面能測試 ----------------------------------- 31
3.3.3 表面粗糙度測試 ------------------------------ 32
第四章 實驗結果與討論 ---------------------------------- 39
4.1 電漿活化對Si3N4表面粗糙度的影響 ------------------ 39
4.2 電漿活化輔助Si3N4–Si3N4鍵結實例 ----------------- 40
4.2.1 電漿活化瓦數對鍵結強度的影響 ----------------- 40
4.2.2 退火溫度對鍵結情況的影響 --------------------- 41
第五章 結論 -------------------------------------------- 51
參考文獻 ----------------------------------------------- 53
參考文獻 [1] Donald M. Kenny, Somerville, N.J., “Method of Isolating Chipsof a Wafer of Semiconductor Material”, U.S. Pat. 3,332,137 (1967).
[2] J.B. Lasky. “Wafer Bonding for Silicon-on-Insulator Technologies”, Appl. Phys. Lett. 48. 78 (1986).
[3] M. Shimbo, K. Furukawa, K. Kukuda, and K. Tanzawa. “Silicon-to-Silicon Direct Bonding Method”, J. Appl. Phys. 60, 2987 (1986).
[4] G. Wallis and D.I. Pomerantz, “Field Assisted Glass-Metal Sealing”, J. Appl. Phys. 40, 3946 (1969).
[5] R.K. Iler, The Chemistry of Silica, Wiley, New York, 1979).
[6] Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding:Science and Technology, p.103-135, John Wiley & Sons, Inc., 1999.
[7] R.W. Bower, M.S. Ismail and B.E. Roberds, “Low Temperature Si3N4 Direct Bonding”, Appl. Phys. Lett., Vol. 62, No. 26 (1993).
[8] J.B. Lasky, S.R. Stiffler, F.R. White, and J.R. Abernathey, “Silicon-on-Insulator (SOI) by Bonding and Etch-back”, IEEE, New York, 1985.
[9] Takao Yonehara, Kiyofumi Sakaguchi, and Nobuhiko Sato, “Epitaxial Layer Transfer by Bond and Etch Back of Porous Si”, Appl. Phys. Lett. 64 (16), 1994.
[10] M. Bruel, “Silicon on insulator material technology”, Electron. Lett. Vol.31, p.1201 (1995).
[11] K. Peterson, Philip Barth, J. Poydock, J. Brown, J. Mallon, and J. Bryzek, “Silicon Fusion Bonding for Pressure Sensors”, IEEE, TH215-4/88/0000-0144 (1988).
[12] Y. Xiong, Y. Zhou, Y.-H. Lo, C. Ji, S.A. Bashar, A.A. Allerman, T. Hargett, R. Sieg, and K.D. Choquette, “Oxide-Defind GaAs Vertical-Cavity Surface-Emitting Lasers on Si Substrates”, IEEE, Photonics Technology Letters, Vol. 12, No.2 (2000).
[13] D.A. Vanderwater, F.A. Kish, M.J. Peansky, S.J. Rosner, J. Cryst, “Electrical Conduction Throuh Compound Semiconductor Wafer Bonded Interfaces”, Journal of Growth (Netherlands) Vol. 174, No. 1-4, p.213-9 (1997).
[14] R.T. Carline, D.A. Hope, M.B. Stanaway, and D.J. Robbins, “Controlled Growth of Long Wavelength Si/Ge Multi-quantum Well Resonant Cavity Photodetectors”, SPIE, Vol. 3007 (1997).
[15] G.K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator”, Journal of Appl. Phys., Vol. 93, p.4955- 4975 (2003).
[16] E. Arnold, H. Pein, and Sam P. Herko, “Comparison of Self-Heating Effects in Bulk-Silicon and SOI High-Voltage Devices”, IEEE, IEDM, 1994, p.813-816.
[17] H. Neubrand, R. Constapel, R. Boot, M. Füllmannand,.and A. Boose, “Thermal Behaviour of Lateral Power Devices on SOI Substrates”, Proc 6th ISPSD, 1994, p.123-127.
[18] Y.-K. Leung, Y. Suzuki, Kenneth E. Goodson, and S. Simon Wong, “Self-Heating Effect in Lateral DMOS on SOI”, Proc 7th SPSD, 1993, p. 124-127.
[19] J.Roig, D. Flores, M. Vellvehi, J. Rebollo, and J. Millan, “Novel Techniques for Reducing Self-Heating Effects in Silicon-on-Insulator Power Devices”, IEEE, 2001.
[20] http://www.siliconfareast.com/sio2si3n4.htm
[21] T.Yasuda, Y. Ma, S. Habermehl, and Lucovsky, “Low-Temperature Preparation of SiO2-Si(100) Interfaces Using a Two-Step Remote Plasma-Assisted Oxidation-Deposition Process”, Appl. Phys. Lett. 60 (4), 27 January 1992.
[22] S.-W. Choi, W.-O. Choi, Y.-H. Lee, B.-K. Ju, M.-Y. Sung, and B.-H. Kim, “The Analysis of Oxygen Plasma Pretreatment for Improving Anodic Bondinf”, Journal of The Electrochemical Society, 149(1) G8-G11, 2002.
[23] S. Yamasaki, U. K. Das, and K. Ishikawa, “Direct observation of surface dangling bonds during plasma process - chemical reactions during H2 and Ar plasma treatments”, Thin Solid Films 407 (2002) 139-147.
[24] G. Kissinger and W. Kissinger, “Void-free silicon-wafer-bond strengthening in the 200-400 degree C range.”, Sensors and Actuators A, 36 (1993) 149-156.
[25] A. Stirlin, A. Pasquarello, J.-C. Charlier, and R. Car, “Dandling Bond at Si-SiO2 Interfaces: Atoic Structure of the Pb1 Center”, Physical Review Letters, Vol. 85, 2000.
[26] S.N. Farrens, J.R. Dekker, J. K. Smith, and B. E. Roberds, “Chemical Free Room Temperature Wafer To Wafer Direct Bonding”, J. Electrochem. Soc. Vol. 142, No. 11, November 1995.
[27] S. Weichel , R. de Reus, S. Bouaidat, P.A. Rasmussen, O. Hansen, K. Birkelund, H. Dirac, “Low-temperature anodic bonding to silicon nitride”, Sensors and Actuators 82 (2000) 249-253.
[28] Donato Pasquariello, Christer Hedlund, and Klas Hjort, “Oxdation and Induced Damage in Oxygen Plasma In Situ Wafer Bonding”, Journal of the Electrochemical Society, 147 (7) 2699-2703 (2000).
[29] O. Zucker, W. Langhemrich, and M. Kulozik, “Application of Oxygen Plasma Processing to Silicon Direct Bonding”, Sensors and Actuators A, 36 (1993) 227-231.
[30] N. Cabrera and N. F. Mott, “Theory of the Oxidation of Metals”, H. H. Wills Physical Laboratory, University of Bristol, 1949.
[31] 高正雄 編著, “超LSI時代 – 電漿化學”, p.29, 復漢出版社, 1999.
[32] P. Amirfeiz, S. Bengtsson, M. Bergh, E. Zanghekkini, and L. Börjesson, “Formation of Silicon Structures by Plasma-Activated Wafer Bonding”, Journal of the Electrochemical Society, 147 (7) 2693-2698 (2000).
[33] B.E. Roberds and S.N. Farrens, “Low Temperature, In Situ, Plasa Activated Wafer Bonding”, Electrochemical Society Proceedings, Vol.97-36.
[34] E.A. Irene, E. Tiereny, and J. Angilello, “A Viscous Flow Model to Explain the Appearance of High Density Thermal SiO2 at Low Oxidation Temperatures”,J. Electrochem. Soc.: Solid-State Science and Technology, Vol. 192, No. 11, 1982.
[35] Wei Bo Yu, Cher Ming Tan, Jun Wei, Shu Sheng Deng, and Mui Ling Nai, “Influence of Plasma Treatment and Cleaning on Vacuum Wafer Bonding”, 2003 Electronics Packaging Technology Conference, IEEE, 2003.
[36] Cher Ming Tan, Weibo Yu, and Jun Wei, “Comparison of Medium-vacum and Plasma-activated Low-temperature Wafer Bonding”, Applied Physics Letters 88, 114102, 2006.
[37] 莊達人編著, “VLSI製造技術”, 高立圖書有限公司, p.561-564. (2004).
[38] M. Wiegand, M. Reiche. and U. Gösele, “Time-Dependent Surface Properties and Wafer Bonding of O2-Plasma-Treated Silicon (100) Surfaces”, Journal of The Electrochemical Society, 147(7) 2734-2740, 2000.
[39] Xuanxiong Zhang, Benoit Olbrechts, and Jean-Pierre Raskin, “Oxygen Plasma and Warm Nitric Acid Surface Activation for Low-Temperature Wafer Bonding”, Journal of The Electrochemical Society, 153 (12) G1099-G1105 (2006).
[40] T. Suni, K. Henttinen, I. Suni, and J. Makinen, “Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”, Journal of The Electrochemical Society, 149 (6) G348-G351, 2002.
[41] Hong Xiao著, 羅正忠、張鼎張譯, “半導體製程技術導論”, 台北市:台灣培生教育出版:學銘圖書發行, 2002.
[42] H. Moriceau, F. Rieutord, C. Morales, and A.M. Charvet, “Surface Plasma Treatments Enabling Low Temperature Direct Bonding”, Microsyst Technol (2006) 12: 378-382.
[43] A. Weinert, P. Amirfeiz, and S. Bengtsson, “Plasma Assisted Room Temperature Bonding for MST”, Sensors and Actuators A, 92(2001) 214-222.
[44] M. Gad-el-Hak, The MEMS Handbook, CRC Press, 2001. p.15-11~15-14, 16-155~16-160.
[45] C. Gui, H. Albers, J.G.E. Gardeniers, M. Elwenspoek, P.V. Lambeck, “Fusion Bonding of Rough Surfaces with Polishing Technique for Silicon Micromaching”, Microsystem Technologies (1997) 122-128.
[46] S. Sánchez, M. Elwenspoek, C. Gui, M.J.M.E. de Nivelle, R. de Vries, P.A.J. de Korte, M.P. Bruijn, J.J. Wijnbergen, W. Michalke, E. Steinbeiβ, T. Heidenblut, and B. Schwierzi, “A High-Tc Superconductor Bolometer on a Silicon Nitride Membrane”, Journal of Microelectrimechanical Systems, Vol. 7, No. 1, 1998.
[47] M. Sheplak, K. S. Breuer, and M. A. Schmide, “A Wafer-Bonded, Silicon-Nitride Membrane Microphone with Dielectrically-Isolated, Single-Crystal Silicon Poezoresistors”, Solid-State Sensor and Actuator Workshop, June 8-11, 1998.
[48] M.J.M.E. de Nivelle, M.P. Bruijn, P.A.J. de Korte, S. Sánchez, M. Elwenspoek, T. Heidenblut, B. Schwierzi, W. Michalke, and E. Steinbeiss, “High-Tc Bolometers with Silicon-Nitride Spiderweb Suspension for Far-Infrared Detection”, Applied Superconductivity, IEEE Transactions on, Vol. 9, 1999.
[49] 小川洋輝、崛池靖浩原著, 顏誠廷譯, “半導體潔淨技術”, p.40-66, 臺北縣五股鄉, 普林斯頓國際出版, 2003.
[50] 莊達人編著, VLSI製造技術, 高立圖書有限公司, 2004, p.269-272.
[51] W. P. Maszara, “Silicon-on-Insulator by Wafer Bonding: A Review”, J. Electroche. Soc., 138, 341 (1991).
[52] A. R. Lang, “Direct Observation of Individual Dislocations by X-ray Diffraction”, J. Appl. Phys., 29, 597 (1958).
[53] R. A. Lemons and C. F. Quate, “Acoustic Microscope – Scanning Version”, Appl. Phys. Lett., 24, 163 (1974).
[54] M. S. Metsik, “Splitting of Mica Crystals and Surface Energy”, J. Adhes., 3, 307 (1972).
[55] Q.-Y. Tong and U. Gösele, “Semiconductor Wafer Bonding: Science and Technology”, p.25, John Wiley & Sons, Inc. (1999).
[56] F. M. Fowkes, “Determination of Intermolecular Forces by Surface-Chemical Techniques”, Ind. Eng. Chem., 56(12), 40 (1964).
[57] D. K. Owens and R. C. Wendt, “Estimation of the Surface Free Energy of Polymers”, J. Appl. Polym. Sci., 13, 1741 (1969).
[58] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev.Lett.,56,930(1986).
[59] Q.-Y. Tong and U. Gösele, “Semiconductor Wafer Bonding: Science and Technology”, p.121, John Wiley & Sons, Inc. (1999).
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2007-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明