博碩士論文 943203042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.142.255.252
姓名 孫麗雯(Li-wen Sun)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磨料噴射技術應用於模具鋼精微拋光之研究
(A Study on Micro Polishing of mold steel by Abrasive Jet Technology)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要運用一自動磨料噴射精微拋光系統,探討其磨料噴射拋光法對於SKD61模具鋼放電面、研磨面與銑削面(微溝槽、微流道)等不同加工表面的拋光改善效果。
實驗證明水蠟能增加磨料的滑動效果並減緩表面硬化現象,且在添加劑混合比例500: 1000: 1500(水蠟: 磨料: 水)之下,對於1.0 μm Ra放電表面,以#2000SiC磨料,能在加工時間90 min內將表面改善至0.08 μmRa之近似鏡面效果。對於0.36 μmRa研磨表面,以#3000SiC磨料,能在加工時間60 min內將表面改善至0.054 μmRa之鏡面效果。對於0.24 μmRa微溝槽表面,以#3000SiC磨料,能在加工時間30min內將表面改善至0.06 μmRa之鏡面效果。對於0.36 μmRa直線型微流道表面,以#1000SiC磨料,能在加工時間60 min內將表面改善至0.06 μmRa之鏡面效果。而研究以霧化法所製作具滑動研磨功能之蠟砂(#3000SiC),能成功在加工時間45 min內將研磨面原始粗糙度0.36 μmRa改善至0.049 μmRa之鏡面拋光效果,且由實驗證明蠟砂能大幅減少SiC的嵌入與延後硬化效果。
摘要(英) This research mainly constructed out an automatic abrasive jet system for micro polishing machining, and took different SKD61 surface such as EDMed surface、grinding surface and milling surfac (micro-groove and micro-channel)as target of improving.
From research, a fact was found that Water Wax could improve sliding polishing effect and reduce hardening phenomenon After Water Wax and #2000SiC abrasives were mixed, the roughness of EDMed surface could reduced from Ra: 1.0 µm to 0.08 µm within 90 minutes of machining time. After water wax and #3000SiC abrasives were mixed, the roughness of grinding surface could be reduced from Ra: 0.36 µm to 0.054 µm within 60 minutes of machining time. After water wax and #3000SiC abrasives were mixed, the roughness of micro-groove surface could be reduced from Ra: 0.24 µm to 0.06 µm within 30 minutes of machining time. After water wax and #1000SiC abrasives were mixed, the roughness of micro- channel surface could be reduced from Ra: 0.36 µm to 0.06 µm within 60 minutes of machining time.
In this research, the SiC with Wax made atomization was proposed in this research. Within 45 minutes of machining time, the roughness of grinding surface could be reduced from Ra: 0.36 µm to 0.049 µm. The whole polishing time was not only shortened but also improved the hardening phenomenon caused by similar ball impact and surface embedment thoroughly.
關鍵字(中) ★ 曲面拋光
★ 放電加工
★ 磨料噴射
★ 霧化法
關鍵字(英) ★ Mirror machining of curved surface
★ Electrical discharge machined
論文目次 目 錄
摘 要 I
英 文 摘 要 II
謝 誌 III
目 錄 IV
圖 目 錄 VII
表 目 錄 X
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 研究方法 5
1-4 論文架構 6
第二章 文獻回顧 7
2-1 放電製程改善探討 7
2-2 表面拋光改善探討 8
2-3 磨料噴射加工法探討 10
第三章 實驗設備與方法 13
3-1 放電加工法基本原理 13
3-1-1放電加工材料去除機制 14
3-2 磨料噴射加工法基本原理 17
3-2-1 磨料噴射加工材料移除機制 18
3.3 實驗設備 20
3-3-1 加工設備 20
3-3-2 量測觀察設備 23
3.4 實驗材料 26
3.5 實驗流程 27
3.6 最佳參數水準組合 28
第四章 放電表面與研磨表面之拋光改善 38
4-1放電表面拋光效果 38
4-1-1不同添加劑種類 38
4-1-2不同磨料粒徑 43
4-1-3表面成份分析與拋光效果之比較 46
4-2 研磨表面 50
4-2-1 添加劑比例 50
4-2-2 不同磨料粒徑 52
第五章複雜曲面之拋光效果 56
5-1 微溝槽 56
5-1-1 實驗規劃 56
5-1-2 微溝槽拋光改善效果 57
5-2 微流道 60
5-2-1 直線型微流道 62
5-2-2 S型微流道 65
5-2-3 直角型微流道 67
第六章 蠟砂應用於SKD61研磨表面之改善 69
6-1霧化法加工原理 69
6-2蠟砂拋光效果 71
6-3表面特性探討 73
6-3-1 SEM 73
6-3-2表面實體圖 74
6-3-3腐蝕實驗 75
6-3-4表面微元素分析 76
6-3-5 微硬度測試 78
第七章 總結論 80
參考文獻 82
參考文獻 1. 張耿維,「磁力研磨與電解磁力研磨之拋光特性研究」,國立中央大學機械工程學系博士論文,2003。
2. E. Belloy, A. Sayah, M.A.M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials”, Sensors and Actuators A 92 (2001) 358-363.
3. W. Theisen, A. Schuermann, “Electro discharge machining of nickel–titanium shape memory alloys”, Materials Science and Engineering A378 (2004).200-204.
4. H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M. Kunieda, “High-quality cutting of polished single-crystal silicon by wire electrical discharge machining”, Article Precision Engineering 29 (2005) 423-430.
5. A. Curodeau, M. Richard, L. Frohn-Villeneuve, “Molds surface finishing with new EDM process in air with thermoplastic composite electrodes,” Journal of Materials Processing Technology 149 (2004) 278–283.
6. P. Pec¸as, E. Henriques, “Influence of silicon powder-mixed dielectric on conventional electrical discharge machining,” International Journal of Machine Tools & Manufacture 43 (2003) 1465–1471.
7. Bo Hyun Kim, Shi Hyoung Ryu, Deok Ki Choi and Chong Nam Chu, “Micro electrochemical milling”, J. Micromech. Microeng. (2005)15 124-129
8. L. S. Andrade, S. C. Xavier, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, “Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration”, Electrochimica Acta 50 (2005) 2623–2627.
9. E. S. Lee, “Machining Characteristics of the Electropolishing of Stainless Steel (STS316L)”, The International Journal of Advanced Manufacturing Technology 16 (2000) 591–599.
10. K. Takahata, S. Aoki and T. Sato, “Fine surface finishing method for 3-dimensional micro structures”, IEEE MEMS (1996) 73-78.
11. S. Yin, T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture 44 (2004) 1297–1303.
12. H. Yamaguchi, T. Shinmura, “Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process”, Precision Engineering 28 (2004) 135–142.
13. R. Balasubrama, J. Krishnan, N. Ramakrishnan, “A study on the sharp of the surface generated by abrasive jet machining”, Journal of Materials Processing Technology 121 (2002) 102-106.
14. Y. H. Guu, H. Hocheng, C. Y. Chou, C. S. Deng, “Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel”, Materials Science and Engineering A358 (2003) 37–43.
15. K. M. Shu, G. C. Tu, “Study of electrical discharge grinding using metal matrix composite electrodes”, International Journal of Machine Tools & Manufacture 43 (2003) 845–854.
16. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flukiger, “Microstructure at submicron scale of the white layer produced by EDM technique”, Journal of Materials Processing Technology 149 (2004) 289–295.
17. B. Mohana, A. Rajadurai, K. G. Satyanarayana, “Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode”, Journal of Materials Processing Technology 153 (2004) 978-985.
18. J. Y. Choi, H. D. Jeong, “A study on polishing of molds using hydrophilic fixed abrasive pad”, International Journal of Machine Tools & Manufacture 44 (2004) 1163–1169.
19. Y. Unoa, A. Okadaa, K. Uemurab, P. Raharjo, T. Furukawa, K. Karato, “High-efficiency finishing process for metal mold by large-area electron beam irradiation”, Source: Precision Engineering 29 (2005) 449-455.
20. Hung Sung Liu, Biing Hwa Yan, Chien Liang Chen and Fuang Yuan Huang “Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining”, International Journal of Machine Tools & Manufacture (2006) 46 80-87.
21. M. D. Krymsky, “Magnetic abrasive finishing”, Metal Finishing (1993) 21-25.
22. Z. Haga and T. Semba, “Electrophoretic polishing of zirconia ceramicsusing a porous anodic film as a binder of ultrafine silica abrasives”, JSME International Journal Series C, 41 (4) (1998) 922-928
23. H. Wensink, H. V. Jansen, J. W. Berenschot, M. C. Elwenspoek, “Mask materials for poeder blasting”, J Micromech. Microeng. 10 (2000) 175-180.
24. H. Wensink, H. V. Jansen, J. W. Berenschot, M. C. Elwenspoek, “High Resolution Powder Blast Micromachining”, Micro Electro Mechanical Systems (2000) 769-774.
25. S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek, A. Vandenberg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips withintegrated conductivity sensors”, J.Micromech.Microeng.11 (2001) 386-389.
26. M. Wakuda, Y. Yamauchi, S. Kanzaki, ” Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials”, Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 193–198.
27. J. A. Plaza, M. J. Lopez, A. Moreno, M. Duch, C. Cane, “Definition of high aspect ratio glass columns”, Sensors and Actuators A105 (2003) 305–310.
28. D. Jianxin, F. Yihua, D. Zeliang, S. Peiwei, “Wear behavior of ceramic nozzles in sand blasting treatments”, Journal of the European Ceramic Society 23 (2003) 323–329.
29. M. Wakuda, Y. Yamauchi, S. Kanzaki, “Material response to particle impact during abrasive jet machining of alumina ceramics”, Journal of Materials Processing Technology 132 (2003) 177–183.
30. D. S. Park, M. W. Cho, H. Lee, W. S. Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234-240.
31. J. Qua, A. J. Shih, R. O. Scattergood, J. Luo, “Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC–Co composite”, Journal of Materials Processing Technology 166 (2005) 440–448.
32. A. Sayah, V. K. Parashar, A. G. Pawlowski, M. A. M. Gijs, “Elastomer mask for powder blasting microfabrication”, Sensors and Actuators A125 (2005) 84–90
33. M. Junkar, B. Jurisevic, M. Fajdiga, M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112.
34. J.L. Lin, K.S. Wang, B. H. Yan, Y. S. Tarng, “Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology 102 (2000) 48-55.
35. 董光雄,「放電加工」,復文書局,p.26~29,1994。
36. B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, J. Am. Ceram. 63(9) (1980) 574-581.
37. D. B. Marshall, “Geometrical effects in elastic/plastic indentation”, J. Am. Ceram. 64 (1981) 57-60.
38. P. D. Warren, “Determining the Fracture Toughness of Brittle Materials by Hertzian Indentation”, J Euro. ceram Soc 15 (1995) 385-394.
39. 簡文通,「機械製造」,全華科技圖書,2004。
指導教授 顏炳華(Biing Hwa Yan) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明