以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:59 、訪客IP:18.222.91.173
姓名 陳致銘(Jhih-Ming Chen) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 氫能利用:新型可攜式潔淨電源產生器實作與數值分析
(Hydrogen Usage Technology: Experimental and Numerical Studies on small Portable Clean Power Generator)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文應用氫與蜂巢式白金觸媒,分別結合熱再循環技術和衝擊流流場來產生熱源,並利用熱電材料(thermoelectric module, TE)和熱交換器(heat exchanger, HE),設計實作三種新輕巧型可攜式潔淨電源產生器,可提供諸如戶外照明、手機等小型電子設備充電用。此觸媒熱電轉換技術,首重在設計與改良觸媒熱源產生器(catalytic heat generator, CHG)和HE,使置於其中之TE接觸表面能有均勻溫度分佈,並有約200ºC的溫差及約200 psi的壓力負載,這是達到最佳TE發電效率之必要條件。本研究有三種CHG之設計並配合兩種HE:(1)採用不銹鋼和銅兩種不同材料所製之流道截面積為5 cm × 1 cm的2.5圈瑞士捲(Swiss-roll, SR)CHG,搭配氣冷式鋁製散熱鰭片;(2)與設計(1)類似,使用銅材料所製之流道截面積為0.8 cm × 0.8 cm的1.5圈SRCHG,搭配水冷式銅製HE;(3)衝擊流CHG,即運用觸媒圓管噴流,直接衝擊置於一傳熱銅片上之TE,並搭配水冷式銅製HE。我們以多達15支K型熱電偶和氣體分析儀,定量量測三種不同CHG設計之溫度分佈和生成物成分,進而分析材料特性、SR圈數、燃氣雷諾數(Re)以及氫體積濃度([H2])等效應,對CHG性能之影響,以評估三種不同設計之電源產生器的輸出功率大小。另一研究重點,為建立SRCHG和衝擊流CHG的二維數值模型,以CFD-RC為基礎,結合CHEMKIN 4.1中13個步驟之氫與白金觸媒表面反應機制,來模擬分析設計(2)和設計(3)之化學反應流場,並考慮熱損失效應。
實驗量測和數值模擬結果,均顯示以氫為燃料之三種不同設計CHG,其生成物僅為水,完全沒有可量測之[CO]和[NOx],確為潔淨電源產生器。我們發現,CHG材料之熱傳導係數,對TE接觸表面能否維持溫度均勻之分佈有重大影響,例如[H2] = 3%和Re = 380操作條件下,銅製設計(1)SRCHG,其輸出功率遠高於設計(1)不銹鋼製SRCHG約達4倍之多。增加SRCHG捲道圈數,雖然可提高熱再循環率,但無助於達到所需之最佳溫度差,且還會增加電源產生器的體積,故若以SRCHG為小型電源產生器之熱源,設計(2)遠比設計(1)優良。在[H2] = 1% ~ 4%和Re = 350 ~ 1300範圍內,SRCHG內部不同位置之溫度皆會隨著[H2]和Re增加而增加,故由控制[H2]和Re,可增加電源產生器之輸出功率密度。設計(3)的特色,不僅有最小的體積,且具備更寬廣的操作範圍([H2] = 1% ~ 10%,Re = 1000 ~ 6000),可輕易產生高達500 mW/cm2的輸出功率密度,優於設計(2)最高的320 mW/cm2和設計(1)最高的240 mW/cm2。本研究實作出手掌大小以氫為燃料之零污染電源產生器,足以提供一般小型電子設備用,並成功建立相關之化學反應流場之數值模型,應具有重要的應用和學術價值。摘要(英) This study uses hydrogen as a fuel in honeycomb Pt catalysts, combines with heat-recirculation technology or impinging jet flow to produce heat, and further integrates thermoelectric (TE) modules and the heat exchanger (HE) as a cooler, to propose three portable clean electric power generators for the use of small electronic devices such as outdoor lighting and cell phones. There are three different designs of catalytic heat generators (CHG) together with two different HEs in this study, each having a HZ-2 TE module between CHG and HE. Design (1) is a 2.5-turn Swiss-roll CHG (SRCHG), made of either stainless steel or copper, having a flow channel cross-section of 5 cm * 1 cm with an aluminum-fin HE. Design (2), similar to design (1) and copper-made only having 1.5-turn squared flow channel of 0.8 cm side length, is water-cooled by a copper HE. An impinging thermal jet was applied to design (3) for directly heating the copper plate adjacent to the TE module with the same HE used in design (2). The first objective is to design suitable CHG and HE, for which the temperature distribution on TE can be as uniform as possible having a temperature gradient of 200 ºC with a high compressive load of about 200 psi for achieving the best TE performance. As many as 15 thermocouples are used to measure the temperature distribution in these three CHGs and the product concentrations were also measured by the gas analyzer. Thus, these data can be used to analyze the effects of material properties, the number of turns of SRCHG, flow Reynolds number (Re = VfDin/n) and hydrogen volume concentration [H2] to the TE power performance, where Vf is the average velocity of reactants, Din is the width of flow channel or the jet diameter, and n is the kinematic viscosity of reactants. The second objective is to build two-dimensional CFD-RC based numerical models with submodels from CHEMKIN 4.1 including 13 hydrogen-Pt surface reactions and with the consideration of heat losses for simulation of chemically reacting flows occurred in designs (2) and (3).
Both experimental and numerical results show that all three CHGs have zero [CO] and [NOx] emissions with only water as the product, so they are true clean electric power generators. For the design (1), we found that the copper-made SRCHG has up to four times higher TE power density output than the steel-made SRCHG due to higher thermal conductivity of coppor. Furthermore, it is found that increasing channel turns of SRCHG does not increase the power density output. For the design (2), values of temperature at various positions inside the SRCHG increase linearly with [H2] and/or Re, at least in the ranges of [H2] = 1% ~ 4% and/or Re = 350 ~ 1300. By adjusting [H2] and/or Re of the SRCHG (2), we can control TE power output, and the design (2) is much better than the design (1) in terms of smaller volume and higher power density output. Finally, the design (3) has the smallest volume, widest operation ranges ([H2] = 1% ~ 10% and Re = 1000 ~ 6000), and highest power density output (500 mW/cm2) among all three designs. Finally, the present palm-sized clean hydrogen-fueled electric power generators and their corresponding 2D numerical models successfully established here are of both practical and academic fundamental values.關鍵字(中) ★ 熱電材料
★ 氫能利用
★ 潔淨電源產生器
★ 蜂巢式白金觸媒
★ 熱再循環關鍵字(英) ★ clean electric power generator
★ heat-recirculation
★ thermoelectric module
★ honeycomb Pt catalyst
★ hydrogen論文目次 摘要........................................................................................................................I
英文摘要.............................................................................................................. II
致謝.....................................................................................................................IV
目錄...................................................................................................................... V
圖表目錄.......................................................................................................... VIII
符號說明.............................................................................................................XI
第一章 前言.................................................................................................. 1
1.1 研究動機................................................................................................. 1
1.2 問題所在................................................................................................. 2
1.3 解決方法................................................................................................. 3
1.4 論文概要................................................................................................. 4
第二章 文獻回顧.......................................................................................... 5
2.1 熱再循環燃燒原理與應用..................................................................... 5
2.2 衝擊流原理與應用................................................................................. 6
2.3 觸媒化學反應原理與燃燒技術之應用................................................. 7
2.3.1 觸媒化學反應原理....................................................................... 7
2.3.2 觸媒化學反應之應用................................................................... 8
2.4 熱電轉換技術....................................................................................... 10
2.4.1 Seebeck 效應.............................................................................. 10
2.4.2 Peltier 效應................................................................................. 10
2.4.3 Thomson 效應............................................................................ 11
2.4.4 熱電材料的應用......................................................................... 12
第三章 實驗設備與實驗方法.................................................................... 17
3.1 燃氣供應系統....................................................................................... 17
VI
3.1.1 實驗氣體與流量控制混合裝置................................................. 17
3.1.2 預混燃氣相關計算..................................................................... 18
3.2 量測儀器系統....................................................................................... 19
3.2.1 溫度量測系統............................................................................. 19
3.2.2 生成物濃度量測系統................................................................. 19
3.2.3 電壓、電流和功率輸出量測系統............................................ 19
3.3 潔淨電源產生器本體............................................................................ 20
3.3.1 熱電元件..................................................................................... 20
3.3.2 實驗觸媒材料............................................................................. 20
3.3.3 燃燒器設計................................................................................. 21
1. 設計(1) .....................................................................................................21
2. 設計(2) .....................................................................................................22
3. 設計(3)(衝擊流CHG) .........................................................................22
3.4 實驗流程............................................................................................... 22
第四章 數值方法........................................................................................ 30
4.1 數值理論與方法................................................................................... 30
4.1.1 統御方程式.................................................................................. 30
4.1.2 均質和非均質之化學反應......................................................... 31
4.2 計算區域................................................................................................ 34
4.3 邊界條件................................................................................................ 35
4.4 數值驗證................................................................................................ 36
第五章 結果與討論.................................................................................... 43
5.1 設計(1) .................................................................................................. 43
5.1.1 CHG 內溫度分佈....................................................................... 43
5.1.2 不同材料和圈數之效應............................................................ 45
VII
5.1.3 負載壓力對輸出功率分析........................................................ 46
5.2 設計(2) .................................................................................................. 46
5.2.1 CHG 內的溫度分佈................................................................... 46
5.2.2 輸出功率..................................................................................... 48
5.2.3 生成物排放濃度分析................................................................. 48
5.3 設計(3) .................................................................................................. 49
5.3.1 衝擊流CHG 表面的溫度分佈.................................................. 49
5.3.2 噴嘴高度的效應......................................................................... 50
5.3.3 輸出功率..................................................................................... 51
第六章 結論與未來工作............................................................................ 65
6.1 結論....................................................................................................... 65
6.2 未來工作............................................................................................... 66
參考文獻............................................................................................................. 67參考文獻 [1]Sitzki, L., Borer, K., Schuster, E., Ronney, P.D., and Wussow, S., “Combustion in microscale heat-recirculating burners”, 3rd Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea (2001).
[2]Lloyd, S.A. and Weinberg, F.J., “A burner for mixtures of very low heat content”, Nature, 251, 47-49 (1974).
[3]heat-recirculating combustors”, Proc. Combust. Inst., 31, 3277-3284 (2007).
[4]Schaevitz, S.B., Franz, A.J., Jensen, K.F., and Schmidt, M.A., “A combustion-based mems thermoelectric power generator”, 11th International Conference on Solid-State Sensors and Actuators, June 10-14, Munich, Germany (2001).
[5]楊竣傑,“氫能利用:過焓觸媒熱電產生器之實作研究”,國立中央大學機械工程究所,碩士論文,2004年。
[6]鄭偉隆,“低氮氧化物燃燒器實驗和數值研究及其應用”,國立中央大學機械工程究所,碩士論文,2005年。
[7]Lloyd, S.A. and Weinberg, F.J., “Limits to energy release and utilization from chemical fuels”, Nature, 257, 367-370 (1975).
[8]Ahn, J., Eastwood, C., Stizki, L., and Ronney, P.D., “Gas-phase and catalytic combustion in heat-recirculating burners”, Proc. Combust. Inst., 30, 2463-2472 (2004).
[9]Kuo, C.H., and Roney, P.D., “Numerical modeling of heat recirculating combustors”, 4th Joint U.S. Section Meeting, Combustion Institute, Philadephia, PA, March (2005).
[10]Kim. N., Kato. S., Kataoka. T., Yokomori. T., Maruyama. S., Fujimori. T., and Maruta. K., “Flame stabilization and emission of small Swiss-roll combustors as heaters”, Combust. Flame, 141, 229–240 (2005).
[11]Narayanan, V., Seyed-Yagoobi, J., and Page, R.H., “An experiment study of fluid mechanics and heat transfer in an impinging slot jet flow”, Int. J. Heat Mass Transf., 47, 1827-1845 (2004).
[12]Martin, H., “Heat and mass transfer between impinging gas jets and solid surface”, Adv. Heat Transfer, 13, 1-60 (1977).
[13]Gardon, R., and Akfirat, J.C., “The role of turbulence in determining the heat-transfer characteristics of impinging jets”, Int. J. heat Mass Transf., 8, 101-108 (1965).
[14]Yokobori, S., Kasagi, N., Hirata, M., and Nishiwaki, N., “Role of large-scale eddy structure on enhancement of heat transfer in stagnation region of two-dimensional, submerged, impinging jet”, Proceedings of 6th International Heat Transfer Conference, Toronto, Canada, 305-310 (1978).
[15]Hayes, R.E. and Kolaczkowski, S.T., Introduction to catalytic combustion, Gordon and Breach Science Publishers, UK (1997).
[16]Pfefferrle, W.C., Heck, R.M., Carrubba, R.M. and Robert, G.W., “Catathermal combustion: a new process for low-emission fuel conversion”, ASME Paper 75-WA/FU-1.
[17]Pfefferrle, W.C. and Pfefferrle, L.D., “Catalytically stabilized combustion”, Prog. Energ. Combust. Sci., 12, 25-41 (1986).
[18]Takeda, K., Jeongmin A., Borer, K., Sitzki, L., and Roney, P.D., “Extinction limits of catalytic combustion in microchannels”, Proc. Combust. Inst., 29(1), 957-963 (2002).
[19]Chao, Y.C., and Chen, G.B., “Ignition hysteresis of hydrogen-air mixture in a platinum monolith honeycomb reactor”, 3rd Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea, 207-210 (2001).
[20]Ferbabadez-Pello, A.C., “Micropower generation using combustion: issues and approach”, Proc. Combust. Inst., 29, 883-899 (2002).
[21]徐德勝,半導體製冷與應用技術,上海交通大學出版社,第二版(1999)。
[22]Suzuki, R.O. and Tanaka, D., “Mathematical simulation of thermoelectric power generation with the muti-panels”, J. Power Sources, 122, 201-209 (2003).
[23]Rowe, D.M., CRC handbook of thermoelectrics, CRC Press LLC, Boca Raton, FL (1995).
[24]Esarte, J., Min, G., and Rowe, D.M., “Modelling heat exchangers for thermoelectric generators”, J. Power Sources, 93, 72-76 (2001).
[25]Norton, D.G., Voit, K.W., Brüggemann, T., and Vlachos, D.G., “Portable power generation via integrated catalytic microcombustion-thermoelectric devices”, 24th Army Science Conference, Orlando, 29-30 November 2004.
[26]Federici, J.A., Norton, D.G., Brüggenmann, T., Voit, K.W., Wetzel, E.D., and Vlachos, D.G., “Catalytic microcombustors with integrated thermoelectric elements for portable power production”, J. Power Sources, 161, 1469-1478 (2006).
[27]Rowe, D.M., and Min, G., “Evaluation of thermoelectric modules for power generation”, J. Power Sources, 73, 193-198 (1998).
[28]Thomas, J.P., Qidwai, M.A., and Kellogg, J.C., “Energy scavenging for small-scale unmanned systems”, J. Power Sources, 159, 1494-1509 (2006).
[29]Norton, D.G., Wetzel, E.D., and Vlachos, D.G., “Thermal management in catalytic microreactors” Ind. Eng. Chem. Res., 45, 76-84 (2006).
[30]Hi-Z Technology Inc. http://www.hi-z.com/
[31]Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., New York (1996).
[32]Warnatz, J. Allendorf, M.D., Kee, R.J. and Coltrin, M.E. “A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on Platinum surfaces”, Combust. Flame, 93, 393-406 (1994).
[33]Hellsing, B., Kasemo, B. and Zhdanov, V.P. “Kinetics of the hydrogen-oxygen reaction on Platinum, J. Catal., 132, 210-228 (1991).
[34]Fuller, E.N., Schettler, P.D. and Giddings, J.C. “A new method for prediction of binary gas-phase diffusion coefficients.” Ind. Eng. Chem., 58(5), 19-27 (1996).Kuo, C.H. and Ronney, P.D., “Numerical modeling of non-adiabatic.指導教授 施聖洋(Shy Shenqyang Steven) 審核日期 2007-7-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare