博碩士論文 943203089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:3.22.248.208
姓名 韓士瑞(Shih-jui Han)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管
(The procedure combines extrusion freezing modeling to form nerve conduits and phase separation to generate porous conduits.)
相關論文
★ 整合可調式阻力之手足復健機研究★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統
★ 顱顏整型手術用植入物之設計與製作★ 電腦輔助骨科手術用規劃及導引系統
★ 遠端遙控機械手臂腹腔鏡手術系統★ 頭部CT與MR影像之融合
★ 手術用影像導引機械人定位及鑽孔系統★ 機器人校正與醫學影像導引定位應用
★ 顱顏手術用規劃及導引系統★ 醫學用超音波影像導引系統
★ 應用3D區域成長法於腦部磁共振影像之分割★ 腦部手術用導引系統之方位校準及腦瘤影像分割
★ 超音波影像即時震波導引★ 腫瘤偵測與顱顏骨骼重建
★ 骨科手術用C-arm影像輔助規劃及導引系統★ 細胞顯微影像分割與運動分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 組織工程用神經導管提供一個橋接神經斷傷兩端的方式,不會造成斷傷兩端神經的張力,創造一個符合神經細胞生長的人為環境,同時可選擇使用生物相容性良好的生醫材料當做製作神經導管材料。
本研究選擇的材料為聚乳酸(PLA)及聚乳酸-聚甘醇酸共聚物(PLGA)兩種目前組織工程主要的人工合成可降解生醫材料,利用擠製冷卻成型法結合熱誘導式相分離法和濕式相分離法,靠著升溫程序對時間的變化程序來製作多孔性的神經導管,討論不同濃度和幾何尺寸對微孔洞分佈和孔洞大小、機械性質、含水率、孔隙率等影響,並依電子顯微影像來觀察神經導管外壁面、橫截面、內壁面,發現神經導管微孔洞成魚骨狀分佈,及孔洞分佈趨勢。由材料試驗機中測得其機械性質中抗拉強度、抗彎強度、撕裂強度,會隨著高分子材料濃度越高或導管外徑越大其值越大,而神經導管伸長量、應變值、楊氏係數卻是反之。而含水率與孔隙率的測試結果發現隨著材料濃度越高其值越小,但導管外徑大小不會影響含水率和孔隙率的高低值。
摘要(英) Porous nerve conduits are generally made by nontoxic biomaterials. It provides a bridge to connect the two ends of broken nerves and also an artificial environment for nerve regeneration.
In this research, a method of using PLGA and PLA biomaterials to fabricate nerve conduits is introduced. The procedure combines extrusion freezing modeling to form conduits, which then go through wet immersion phase separation and thermally induced phase separation to generate porous conduits. The properties of the conduit such as pore distribution, pore size, tensile stress and strain, water content, and porosity are tested and analyzed with respect to the concentration and dimension of the conduit. The inner surface, outer surface, and cross sections of the conduit are also scanned by SEM to find their pore sizes.
The experimental results show that tensile strength and fracture strength are direct proportion to the concentration and diameter of the conduit, while elongation, strain, and Young’s modulus are inverse proportion to them. Moreover, water content and porosity are direct proportion to the concentration of the biomaterial.
關鍵字(中) ★ 組織工程
★ 生醫材料
★ 相分離
★ 神經導管
關鍵字(英) ★ Tissue engineering
★ Biomaterial
★ Phase Separation
★ Nerve Conduits
論文目次 摘要 I
Abstract II
目錄 III
表目錄 VII
圖目錄 VIII
第一章緒論 1
第二章 文獻回顧 3
2-1 神經系統介紹 3
2-1-1周邊神經的結構 3
2-1-2 周邊神經損傷分類 3
2-1-2-1 Seddon 分類法 3
2-1-2-2 Sunderland 分類法 4
2-2 生醫材料 4
2-2-1生醫材料用途 4
2-2-2組織工程用對生醫材料的要求 4
2-2-2 PGA、PLA、PLGA的介紹 6
2-3 組織工程神經導管 7
2-3-1神經導管之材質 8
2-3-2神經導管支架製備方法 9
2-3-2-1 電紡織法 9
2-3-2-2 擠製成型及鹽析法 9
2-3-2-3圓筒編織法及氣泡成型法 10
2-3-2-4黏度滾製法 10
2-4相分離的介紹 11
2-4-1相分離熱力學 11
2-4-2 相分離動力學 14
2-4-2-1 Desolvation 14
2-4-2-2 Demixing 14
2-4-2-3 Phase Transform(Coarsening) 15
第三章 材料與方法 18
3-1 實驗材料 18
3-2 實驗儀器與器材設備 18
3-2-1神經導管的製備 18
3-2-2 神經導管的型態觀察 19
3-2-3神經導管機械性質測試 20
3-2-4 神經導管的含水率測試 20
3-2-5神經導管的孔隙率測試 20
3-3 實驗方法 20
3-3-1 神經導管的製備 20
3-3-2神經導管型態觀察 23
3-3-3神經導管機械性質靜態拉伸測定 24
3-3-4神經導管含水率測定 24
3-3-5神經導管孔隙率測定 25
第四章 結果與討論 26
4-1 升溫程序對神經導管成型機制的影響 26
4-1-2 後處理 41
4-2材料、溶劑與非溶劑的組合對形成中空通道的關係 42
4-3 神經導管觀察 43
4-3-1神經導管巨觀結構型態觀察 43
4-3-2神經導管顯微結構及孔隙分布觀察 46
4-3-2-1 微孔洞大小 47
4-3-2-2管壁厚度 48
4-4 神經導管機械性質靜態拉伸測定 49
4-5 神經導管含水率與孔隙率測試 57
第五章 結論與未來展望 67
5-1 結論 67
5-2 未來展望 67
參考文獻 69
附錄 74
參考文獻 [1] Hutmacher D. W., Michael S., Makarand V. R., ”Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems”, Trends in Biomaerial, Vol 22, No.7, July 2004.
[2] Chen Y. S., Development of a multiple-lumen nerve cuff utilizing growth stimulant patterns for controlled regeneration, Iowa State University, PHD dissertation 1998.
[3] 陳俊男,「神經修復導管發展之現況」,化工資訊,40-45頁,2002年4月。
[4] Wald H. L., Sarakinos G., Lyman M. D., et al., “Cell seeding in porous transplantation devices”, Biomaterials, Vol 14, issue 4, pp. 270-278, 1993.
[5] Widmer M. S., Gupta P. K., Lu L., et al., “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration”, Biomaterials, Vol 19, issue 21, pp.1945-1955, November 1998.
[6] Hole J. W., Koos K. A., 人體解剖學,胡明一等編譯,藝軒圖書出版社,台北市,一九九九年一月版。
[7] Griffin J. W., Kidd G., Trapp B. D., “Interactions between axons and Schwann cells.”, In Dyck PJ, Thomas PK, eds. Peripheral neuropathy. Phialdephia: WB Sanders Co,1993.
[8] Tonge D. A., Golding J. P., “Regeneration and repair of the peripheral nervous system”, Sem Neurosci , Vol 5, pp. 385-390, 1993.
[9] Seddon H., “Three types of nerve injurey”,Brain, Vol 66, pp.237-288, 1943.
[10] Seddon H., “Surgical disorders of the peripheral nerves”, 1st ed., Churchill livingstone,1972.
[11] Sunderland S., “Nerves and nerve injuries”,Churchill Livingston, New York,1981.
[12] Evans G. R. D., Brandt K., Widmer M. S., et al.,” In vivo evaluation of poly( -lactic acid) porous conduits for peripheral nerve regeneration”, Biomaterial, Vol 20, issue 12, pp. 1109-1115, June 1999.
[13] Danielsson C., Ruault S., Aurelia B. D., et al., “Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cellsBiomaterials”, Biomaterial, Vol 27, issue 7, pp. 1054-1060, March 2006.
[14] King E., Cameron R. E., “Effect of hydrolytic degradation on the microstructure of poly(glycolic acid): an X-ray scattering and ultraviolet spectrophotometry study of wet sample ultraviolet”, J. Appl. Polym. Sci., Vol 66, pp. 1681-1690, 1997.
[15] You Y., Min B. M., Lee T. S., et al.,” In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide)”, J. Appl. Sci., Vol 95 , pp. 193-200, 2005.
[16] 黃偉春等,「軟骨組織工程進展」,國外醫學生物醫學工程分冊第22卷第5期,1999。
[17] 楊志明主編,組織工程,九州圖書文物有限公司, 400-405頁,台北市,2005
[18] Lundborg G., “Nerve regeneration and repair”, Acta Orthop Scand , Vol 58, pp.145-169, 1987.
[19] Terzis J. K., Sun D. D., Thanos PK. “Historical and basic science review: past, present and future of nerve repaired”, J Reconstr Microsurg, Vol 13, pp. 215-225, 1997.
[20] Millesi H., “Progress in peripheral nerve reconstruction”, World J Surg, Vol 14, pp. 733-747, 1990.
[21] Sundback C., Hadlock T., Cheney M., et al.,” Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process”, Biomaterial, Vol 24, issue 5, pp. 819-830, February 2003.
[22] Robinson P. H., Lei B. V., Hoppen H. J., et al.,”Nerve regeneration through a two-poly biodegradable nerve guide in the rat and the influence of ACTH 4-9 nerve growth factor”, Microsurgery ,Vol12, pp.412-419,1991.
[23] Ahmed R., Venkateshwarlu U., Jayakumar R.,” Multilayered peptide incorporated collagen tubules for peripheral nerve repair”, Biomaterial, Vol 25, issue 13, pp. 2585-2594, June 2004.
[24] Seal, B. L. and Otero T. C.,” Review, Polymeric biomaterials for tissue and organ regeneration”, Material Science and Engineering, Vol 34, pp.147-230, 2001.
[25] Meek M. F.and Coert J. H., “Clinical use of nerve conduit in peripheral-nerve repair:Review of the literature.”, Reconstructive Microsurgery, Vol 18, pp.97-109, 2002.
[26] Lundborg G.,” Nerve regeneration: the nerve chamber as an experimental tool” Nerve injury and repair, New York:Churchill Livingstone, 1998.
[27] Widmer M. S., Gupta P. K., Lu L., “Manufactue of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.” Biomaterials, Vol 19, pp.1945-1955, 1998.
[28] Bini, T. B., Gao S., Tan, et al.,” Electrospun Poly(L-latcide-co-glycolide) biodegradable polymer nanofiber tubes for peripheral nerve regeneration.”, Nanotechnology, Vol.25, pp.3717-3723, 2004.
[29] Matsuoto K., Ohnishi K., Kiyotani T.,”Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophy siological evalution of regenerated nerves”, Brain Reseach,868, pp.315-328,2000.
[30] Yoon J. J., Park T. G.,”Degradation behaviors of biodebiodegradable macroporous scaffolds prepared by gas foaming of effervescent salts”,Biomedical materials Research, Vol.55, pp.401-408,2001
[31] Lorenzo M., Roka S., Jerome, et.al.,”Polymer hollow fiber three-dimension matrices with controllable cavity and shell thickness”,Biomaterial, Vol.27, pp.5918-5926, 2006.
[32] Lai J. Y., Lin F. C., Wu T. T.,. Wang D. M , “On the formation of macrovoids in PMMA membranes.”, J Membrane Sci.,155(1996)49.
[33] Nam Y. S., Park T. G., “Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.”, Biomaterials, 20(1999)1783
[34] Rosen, S. L.,”Fundamental principles of polymeric materials”, New York :Wiley Interscience,Cp.7, pp.82-102, 1993.
[35] Zeman L.J.and Zydney A. L.,”Microfiltration and Ultrafiltration”,New York:Marcal Dekker, Inc.,1996
[36] Schugens C. H., Maquet V., Grandfils C. H., Jerome R..” Polylactide macroporous biodegradable implants for cell transplantation Π. Preparation of polylactide foams by liquid-liquid phase separation”, J Biomed Mater Res 1996;30:449-461.
指導教授 曾清秀(Ching-Shiow Teseng) 審核日期 2007-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明