博碩士論文 943203098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.145.154.219
姓名 潘韋龍(Wei-long Pan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Cu含量對Al-12.5Si-1.0Mg合金熱穩定性與磨耗性質之影響
(Effect of Cu content on the thermal stability and wear behavior of Al-12.5Si-1.0Mg alloy)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在探討含Cu之Al-12.5Si-1.0Mg合金之高溫(300℃)熱穩定性與耐磨性。結果顯示,低Cu(2.55wt.%)合金之鑄態微結構包括鋁矽共晶相、Al2Cu相(θ)、Al5Cu2Mg8Si6相(λ)及Mg2Si相(β),而高Cu(4.53wt.%)合金之鑄態微結構除了未觀察到Mg2Si相(β)外,其餘組成與低Cu合金相似。合金經固溶處理後,高Cu合金鋁基地中的Cu原子固溶量比低Cu合金高,時效處理後,析出大量Al2Cu相(θ)、Al5Cu2Mg8Si6相(λ),提升合金之硬度。高Cu合金於鑄態時,鋁基地中晶出大量Al2Cu相與Al5Cu2Mg8Si6相,而此晶出相經300℃×10hr處理後仍然存在於鋁基地中,致使合金硬度下降幅度減少(約HRF89→HRF75),熱穩定性良好。而時效處理後之合金雖有析出相提升合金硬度,但析出相經300℃×10hr後會產生明顯過時效現象,致使合金硬度大幅下降(約HRF104→HRF57),熱穩定性不如鑄態合金。在低荷重(10N)進行磨耗時,含高低Cu之鑄態與時效處理後之合金,經300℃×100hr處理後之磨耗量相似;但在高荷重(40N)時,合金耐磨性之趨勢與硬度相符,鑄態高Cu合金經300℃×100hr處理後硬度最高,具有最佳耐磨性。
摘要(英) Effect of Cu content on microstructure and mechanical properties of Al-12.5Si-1.0Mg alloys were investigated by adding two kinds of Cu contents (2.55wt.%, 4.53wt.%) into the alloys. The results indicate that microstructural constituents of low-Cu alloys consist of eutectic Al-Si, Al2Cu, Al5Cu2Mg8Si6 and Mg2Si coexist at the Al-matrix. Increasing the Cu content will reduce Mg2Si but increase Al2Cu and Al5Cu2Mg8Si6. Effect of soluting atoms and precipitation hardening increases with the increasing of Cu content, this leads to higher hardness in high-Cu alloys. But the precipitation phase change from coherence or semi-coherence to non- coherence, and the hardness of alloys will decline. The foundry high-Cu alloys after 300℃×100hr treatment contains much intermetallic compounds and shows the best thermal stability. After wear test with 10N load, each alloy shows the same wear rate. When load is 40N, the foundry high-Cu alloy after 300℃×100hr treatment shows the lowest wear rate.
關鍵字(中) ★ Al-12.5Si-1.0Mg合金
★ 磨耗性
★ Cu含量
★ Al2Cu相
★ 熱穩定性
關鍵字(英) ★ Al-12.5Si-1.0Mg alloys
★ Cu concent
★ Thermal stability
★ Al2Cu phase
★ Wear behavior
論文目次 總 目 錄
中文摘要 i
英文摘要 ii
總目錄 iii
圖目錄 v
表目錄 vi
一、前言與文獻回顧................................1
1.1 共晶鋁矽合金簡介..............................1
1.2 Al-Si-Cu-Mg合金之介金屬化合物.................4
1.3 Cu含量對Al-Si-Cu-Mg合金之影響.................6
1.4 研究背景與目的...............................11
二、實驗步驟與方式...............................12
2.1 合金配置與熱處理.............................13
2.1.1 合金配製及成份分析.........................13
2.1.2 熱處理.....................................13
2.2微結構分析....................................14
2.2.1 OM金相觀察.................................14
2.2.2 電子微探儀分析(EPMA).......................14
2.2.3 熱差掃瞄分析(DSC)..........................14
2.2.4 導電度分析(%IACS)..........................15
2.2.5 掃瞄式電子顯微鏡(SEM)......................15
2.3 機械性質分析.................................15
2.3.1 硬度試驗...................................15
2.3.2 磨耗試驗...................................15
三、結果與討論...................................17
3.1 微結構分析...................................17
3.1.1 金相觀察及電子微探儀分析...................17
3.1.2 微分掃瞄熱分析(DSC)........................22
3.1.3 導電度(%IACS)分析..........................28
3.2 機械性質.....................................31
3.2.1 硬度試驗...................................31
3.2.2 磨耗試驗...................................35
四、結論.........................................40
五、未來研究方向.................................42
六、參考文獻.....................................43
參考文獻 [1]. J. L. Jorstad,“Eutectic Al-Si Casting Alloys 25 Years, What’s Next” AFS Transaction, V104(1996), pp. 669-671
[2]. J. E. Gruzleski, B. M. Closset,”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS(1990), pp. 13-14
[3]. 材料手冊II、非鐵金屬材料,中國材料科學學會(1983), pp. 20
[4]. J. E. Hatch,“Aluminum Properties and Physical Metallurgy”, ASM, metal park, Ohio(1984), pp. 346-347
[5]. J. E. Gruzleski and B. M. Closset ,” The Treatment of Liquid Aluminum - Silicon Alloys”, AFS(1990), pp. 25-28
[6]. J.E.Gruzleski and B.M. Closset ,”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS(1990), pp. 30-50
[7]. 吳聲君, 譚安宏, 李勝隆, 林於隆,“微量銻對含鍶A356合金之微結構及機械性質的影響”, 鑄工季刊(1996), 91期
[8]. S. Z. Lu and A. Hellawell , “The Mechanism of Silicon Modification in Aluminum-Silicon Alloys : Impurity Induced Twinning “, Metall. Tarns. A. , vol.18A(1987), pp. 1721-1733
[9]. K. Nogita, J. Drennan and A. K. Dahle, “Evaluation of Silicon Twinning in Hypo-Eutectic Al-Si Alloys”, Mater Trans, V44(2003), pp. 625-628
[10]. R. W. Bruner, “Metallurgy of Die Casting Alloys” , SDCE. Detroit. MI(1976), pp. 25
[11]. F. H. Samuel, A. M. Samuel, “Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings”, Journal of Materials Science, V30(1995), pp. 2531-2510
[12]. 王建義,“鑄造用鋁合金”, 鑄工季刊(1994), 81期, pp. 38-44
[13]. J. L. Jorstad, “Hypereutectic Al-Si Casting Alloys: 25 Years,What’s Next” AFS Transaction,V104(1996), pp. 669-671
[14]. Ned Tenekedjiev, Hasim Mulazimoglu, Bernard Closset,”Microstructures and Thermal Analysis of Strontium-Treated Al-Si alloys ”, American Foundrymen’s Society, Inc.
[15]. P. N. Crepeau, ”Effect of Iron in Al-Si Casting Alloys: A Critical Reviw”, AFS Transactions, V103(1995), pp. 361-365
[16]. 林裕煥,“微量Sr與Be對Al-11%Si合金機械性質之影響”,國立中央大學機械工程研究所碩士論文(1996)
[17]. A. M. Samuel, F. H. Samuel ,”Observations on the /formation of β-Al5FeSi Phase in 319 Type Al-Si alloys”, Journal of Materials Science, V31(1996), pp. 5529-5539
[18]. L. Wang ,”Iron-Bearing Compounds in Al-Si Diecasting Alloys : Morphology and Conditions Under Which They Form” , AFS Transactions, V107(1999), pp. 231-238
[19]. F. H. Samuel, P. Quellet, ”Effect of Mg and Sr Additions on the Formation of Intermetallics in Al-6Si-3.5Cu-(0.45)to(0.8)Fe 319-Tpe Alloy”, Metallurgical and Materials Transactions A,V29A(1998), pp. 2871-2884
[20]. Paih-Shiarng Wang, Sheng-Long Lee,Jing-Chie Lin, ”Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys contaioning trace beryllium ”, Journal of Materials Research,V15(2000), pp.2027-2035
[21]. F. H. Samuel, A. M. Samuel, “Decomposition of Fe-Intermetallics in Sr-Modified Cast 6xxx Type Aluminum Alloys for Automotive Skin”, Metallurgical and Materials Transactions A, V32A(2001), pp. 2061-2075
[22]. 廖義吉, “微量Be與非平衡熱處理對319鑄鋁合金性質之影響”, 國立中央大學機械工程研究所碩士論文(1996)
[23]. F. H. Aamuel, A. M. Aamuel , ”Modification of Iron Intermetallics by Magnesium and Strontium in Al-Si Alloys”, Int. J. Cast Metals Res.,V10(1997), pp. 147-157
[24]. G. Wang, X. Bain, W. Wang and J. Zhang,” Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys”, Materials Letters, V57(2003), pp. 4083-4087
[25]. D. J. Chakrabarti, David E. Laughlin, ”Phase relations and precipitation in Al–Mg–Si alloys with Cu additions”, Progress in Materials Science, V49(2004), pp. 389-410
[26]. I. Dutta, C.P. Harper, “Role of Al2O3 Particulate Reinforcements on Precipitation in 2014-Al-Matrix Composites”, Metallurgical and Materials Transactions A, V25A(1994), pp. 1591-1601
[27]. J. Man, Li. Jing and S. G. Jie, ”The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy”, Journal of Alloys and Compounds, V304(2006), pp. 521-526
[28]. J. Crowther , J. Inst. Met., V76(1949), pp. 201-236
[29]. C. H. Caceres, M. B. Djurdjevic, T. J. Stocjwell and J. H. Sokolowski,”The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys”, Scripta Materialia, V40(1999), pp. 631-637
[30]. K.G. Basavakumar, P.G. Mukunda, M. Chakraborty,” Impact toughness in Al–12Si and Al–12Si–3Cu cast alloys—Part 1: Effect of process variables and microstructure”, International Journal of Impact Engineering(2007).
[31]. M. Zeren, ”Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys”, Journal of Materials Processing Technology, V169(2005), pp. 292-298
[32]. Y. J. Li, S. Brusethaug, A. Olsen, ”Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment”, Scripta Materialia, V54(2006), pp. 99-103
[33]. J. E. Hatch,”Aluminum Properties and Physical Metallurgy” , London, Butterwordths and Co., Ltd.(1976), pp. 143-148
[34]. 劉偉隆, 林淳杰, 曾春風, 陳文照, “物理冶金”, 全華科技圖書股份有限公司(1996), pp. 16-10~11
[35]. S. Shivkumar, S.Ricci, Jr. and D.Apelian, ”Influence of Solution Parameters and Simplified Supersaturation Treatments on Tensile Properties of A356 Alloy”, AFS Transaction, V98(1990), pp. 913-922
[36]. H. G. Kang, M. Kida, H.Miyahara, “Age-Hardening Characteristics of Al-Si-Cu-Base Cast Alloys”, AFS Transactions, V107(1999),
pp. 507-515
[37]. M.Gupta, E.J. Lavernia, “Effect of Processing on the Microstructural Variation and Heat-treatment Response of a Hypereutectic Al-Si Alloy”, Journal of Materials Processing Technology, V54(1995), pp. 261-270
[38]. D.Apelian, S.Shivkumar, G.Sigworth, ”Foundmental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Transaction, V97(1989),
pp. 727-742
[39]. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice Hall, 1988, pp.16-18.
[40]. Karl-Heinz ZUM GAHR,“Microstructure and wear of materials”,ELSEVIER Science Publishing Company Inc(1987).
[41]. F. Wang, H. Liu, Y. M, Y. Jin, “Effect of Si content on the dry sliding wear properties of spray-deposited Al–Si alloy”, Materials and Design, V25(2004), pp. 163–166
[42]. D. K. Dwivedi, “Sliding temperature and wear behaviour of cast Al–Si–Mg alloys”, Materials Science and Engineering A, V382(2004), pp. 328–334
[43]. L. Lasa, J. M. Rodriguez-Ibabe, ”Wear behaviour of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad”, Materials Science and Engineering A, V363(2003), pp. 193-202
[44]. 謝孟雄,“Mg、Cu含量對Al-14.5Si-Cu-Mg合金機械性質之影響”,國立中央大學機械工程研究所碩士論文(2004), pp. 11-21
[45]. C. Ravi, C. Wolverton, ” First-principles study of crystal structure and stability of Al–Mg–Si–Cu precipitates”, Acta Materialia, V52(2004), pp. 4213-4227
[46]. R. E. Reed-Hill, R. Abbaschian, ”Physical Metallurgy Principles”, PWS Publishing Company, 3rd ed., pp. 447-449
[47]. 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚,“工程材料科學“,全華書局(1995), pp. 406-411
指導教授 李勝隆(Sheng-long Lee) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明