博碩士論文 943203109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.188.44.223
姓名 黃子銘(Tzu-ming Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用氣相傳輸平衡產生近化學計量配比之摻釕鈮酸鋰晶體特性研究
(Properties of Ru-doped near-stoichiometric lithium niobate crystals produced by vapor transport equilibration)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是利用氣相傳輸平衡法(VTE)將由柴式長晶法所生長的共熔配比之摻釕鈮酸鋰(Ru:CLN)轉換成近化學計量配比之摻釕鈮酸鋰(Ru:nSLN)晶體。當VTE處理時間增長時,會使晶體中的[Li]/[Nb] 比值增加,造成UV/VIS 吸收邊往紫外光偏移,並使得位於530nm波長下的吸收係數下降。而OH-吸收光譜會因為 [Li]/[Nb]比值的增加,使位在3482cm-1 波數的寬吸收峰漸漸地衰減,同時也使得位在3466cm-1 波數的吸收峰漸漸地增強,並且隨著VTE 反應時間增長時,此吸收峰變的較尖端。當VTE 處理時間達到200小時,則可以得到近化學計量配比摻釕鈮酸鋰晶體。藉由使用532nm 雷射波長的雙波耦合實驗可以得知近化學計量配比摻釕鈮酸鋰有良婕的光學性質,並與共熔配比摻釕鈮酸鋰晶體的比較之下,擁有較大的指數增益係數、較低的繞射效率、較快的響應時間、較高的光敏感性、較大的動態範圍與較小的黑暗衰減時間常數。
摘要(英) In this thesis, Ruthenium (Ru)-doped near-stoichiometric lithium niobate crystals (Ru:nSLN) were prepared by the Vapor Transport Equilibration (VTE) method from Ru-doped congruent lithium niobate grown using the Czochralski method. Increasing the duration time of the VTE treatment would cause the ratio of [Li]/[Nb] in the crystal to increase, which in turn caused that the absorption edges to shift to violet, and the absorption coefficient in the UV/VIS absorption spectra at 530nm to decrease. The broad band in the OH- absorption spectra located at 3482 cm-1 also gradually decreased while another band located at 3466cm-1 gradually increased. The shape became sharper as the VTE treatment time increased. When the VTE treatment time reached 200 hours, Ru-doped near-stoichiometric lithium niobate crystals were obtained. Two-beam coupling examination with a 532nm laser showed that the Ru-doped near-stoichiometric lithium niobate compares with Ru-doped congruent lithium niobate crystals had a larger exponential gain coefficient, lower diffraction efficiency, faster response time, higher sensitivity, higher dynamic range and smaller dark decay time constant than did the Ru-doped congruent lithium niobate crystals.
關鍵字(中) ★ 化學計量配比
★ 鈮酸鋰
★ 摻釕
★ 氣相傳輸平衡
關鍵字(英) ★ VTE
★ LiNbO3
★ Ru
★ SLN
論文目次 摘 要....................................................................................................................I
Abstract.............................................................................................................II
致 謝.................................................................................................................III
表目錄...............................................................................................................VI
符號說明...........................................................................................................IX
第一章 簡介...............................................................................................1
1.1 緒論......................................................................................................1
1.2 鈮酸鋰材料簡介..................................................................................2
1.3 化學計量配比鈮酸鋰晶體生長方式..................................................4
1.4 氣相傳輸平衡法 (Vapor Transport Equilibration)........................7
1.5摻雜之鈮酸鋰晶體...............................................................................8
1.6 晶體光學性質相關研究....................................................................10
1.7 研究動機............................................................................................13
第二章 實驗設備、材料製程與研究方法............................................20
2.1 實驗設備............................................................................................20
2.2 晶體處理............................................................................................22
2.3 氣相傳輸平衡製程(VTE).................................................................24
2.4 晶體檢測儀器....................................................................................25
2.5 晶體後續處理及檢測方法................................................................28
2.6 光學實驗檢測....................................................................................29
第三章 實驗結果與討論........................................................................38
3.1 純鈮酸鋰晶體....................................................................................38
3.2 摻釕鈮酸鋰之 VTE 處理................................................................40
3.3 Ru:nSLN 之鋰濃度檢測...................................................................42
3.4 摻雜釕鈮酸鋰之光學性質檢測........................................................44
第四章 結論.............................................................................................67
參考文獻...................................................................................................68
參考文獻 [1] A.A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J. Ameri. Ceramic Soci., 48(1965)112
[2] P. Lerner, C. Legras et J. P. Duman, ‘‘Stoechiometrie Des Monocristaux De Metaniobate De Lithium”, J. Crys. Growth, 3(1968)231
[3] 孔永發,許京軍,張光寅,劉思敏,陸猗, “多功能光電材料鈮酸鋰晶體”, 2004
[4] K. Nassau, H. J. Levinstein and G. M. Loiacono, “Ferroelectric Lithium Niobate.1. Growth, Domain Structure, Dislocations and Etching”, J. Phys. Chem. Solids, 27(1966)983
[5] K. Nassau, , H. J. Levinstein and G. M. Loiacono, “Ferroelectric Lithium Niobate.2. Preparation of Single Domain Crystals”, J. Phys. Chem. Solids, 27(1966)989.
[6] R.L. Byer, J.F.Young and F.S.Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt”, J. Appl. Phys., 41(1970)2320
[7] K. Niwa, Y. Furukawa, S. Takekawa and K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material”, J. Cryst. Growth, 208(2000)493.
[8] S. Q. Fang, B. Wang, T. Zhang, F. Ling and Y. Q. Zhao, “Growth and characteristics of near-stoichiometric Zn:LiNbO3 crytals grown by TSSG method”, Mater. Chem. Phys., 89(2005)249.
[9] N. Niizeki, T.Yamada and H. Toyoda, “Growth ridge etched hillhocks, and crystal structure of lithium niobate”, Jap. J. Appl. Phys., 6(1967)318
[10] S. C. Abrahams , J. M. Reddy , J. L. Bernstein , “Ferroelectric lithium niobate.3.Single crystal X-ray diffraction study at 24℃”, J. Phys. Chem. Solids, 27(1966)997
[11] S. C. Abrahams, W. C. Hamilton and J. M. Reddy, “Ferroelectric lithium niobate. 4. single crystal neutron diffraction study at 24 ℃”, J. Phys Chem. Solids, 27(1966)1013
[12] S. C. Abrahams , H.J.Levinstein and J. M. Reddy, “Ferroelectric lithium niobate.5.Polycrystal X-ray diffraction study between 24 and 1200”, J. Phys. Chem. Solids, 27(1966)1019
[13] S. C. Abrahams, P.Marsh, “Defect structure dependence on composition in lithium Niobate”, Acta Crystallogr. Sect. B, 42(1986)61
[14] P.K. Gallagher, H.M.O’Bryan, “Characterization of LiNbO3 by dilatometry and DTA”, J. Amer. Cera. Soc., 68(1985)147
[15] 胡明理, ”Zn:LiNbO3之晶體生長與其特性研究”, 2004
[16] http://www.opt-oxide.com/english/product/hikaku_ln.html
[17] H.M. O’Bryan, P. K. Gallagher and C. D. Brandle, “Congruent Composition and Li-Rich Phase Boundary of LiNbO3”, J. Amer. Cera. Soc., 68(1985)493
[18] Y. L. Chen, J. P. Wen, Y. F. Kong, S. L. Chen, W. L. Zhang, J. J. Xu and G. Y. Zhang, “Effect of Li Diffusion on the Composition of LiNbO3 at High Temperature”, J. Crys. Growth, 242(2002)400
[19] M.D. Serrano, V. Bermudez, L. Arizmendi and E. Dieguez, “ Determination of the Li/Nb Ratio in LiNbO3 Crystals Grown by Czochralski Method with K2O Added to The Melt”, J. Crys. Growth, 210(2000)670
[20] J.R. Carruthers, G.E. Peterson, M. Grasso and P.M. Bridenbaugh, “Nonstoichiometric and crystal growth of lithium niobate”, J. Appl. Phys. 42(1971)1846
[21] H.L. Wang, Y. Hang, J. Xu, L.H. Zhang, S.N. Zhu and Y.Y. Zhu, “Near-stoichiometric LiNbO3 crystal grown using the Czochralski method from Li-rich melt”, Mater. Lett., 58(2004)3119
[22] V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Diéguez, “Effect the crystal composition on the domain structure of LiNbO3 grown from Li-rich melts by the Czochralshi technique”, J. Cryst. Growth, 172(1997)269
[23] G. Malovichko, V.G. Grache, L.P. Yurchenko, V.Ya. Proshko, E.P. Kokanyan and V.T. Gabrielyan, ”Improvement of LiNbO3 microstructure by crystal-growth with potassium”, Phys. Status Solidi. A, Appl. Res., 133(1992)29
[24] Y. Kong, W. Zhang, X. Chen, J. Xu and G. Zhang, “OH- absorption spectra of pure lithium niobate crystals”, J. Phys. : Condens. Matter., 11(1999)2139
[25] K. Polgár, Á. Péter and I. Földvéri, “Crystal growth and stoichiometric of LiNbO3 prepared by the flux method”, Opt. Mater., 19(2002)7
[26] V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Diéguez, “On the single domain nature of stoichiometric LiNbO3 grown from melts containing K2O”, Appl. Phys. Lett., 70(1997)10
[27] K. Polgár, Á. Péter, I. Földvéri and Z. Szaller, “Structural defects in us-grown Stoichiometric LiNbO3 single crystals”, J. Cryst. Growth, 218(2000)327
[28] S. Solanki, T.C. Chong and X. Xu, ” Flux growth and morphology study of stoichiometric lithium niobate crystals”, J. Cryst. Growth, 250(2003) 134
[29] K. Kitamura, J.K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system”, J. Cryst. Growth, 116(1992)327
[30] C.H. Lin, C.Y. Huang, J.Y. Chang, “Increasing the conductivity of photorefractive BaTiO3 single crystals by doping Ru”, Appl. Surf. Sci., 340(2003)208
[31] V. Marinova, M.L. Hsieh, S.H. Lin, K.Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals.” Opt. Comm., 203(2002)377
[32] F. Ramaz, L. Rakitina, M. Gospodinov, B. Briat, “Growth and properties of Ru-doped lithium niobate crystal”, Opt. Mater. 27(2005)1547
[33] R.L. Byer, J.F. Young and R.S. Feigelson, “Growth of high-quality LiNbO3 crystal from the congruent melt", J. Appl. Phys., 41(1970)2320.
[34] C. Y. Chen, J. C. Chen, Y. J. Lai, “Investigations of the growth mechanism of stoichiometric LiNbO3 fibers grown by the laser-heated pedestal growth method”, J. Cryst. Growth 275(2005)769
[35] C. Y. Chen, J. C. Chen, C. T. Chia, “Growth and Optical Properties of Different Compositions of LiNbO3 Single Crystal Fibers”, Opt. Mater. (2007) in press
[36] G. Zhong, J. Jin and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate”, In Proceedings of the 11th International Quantum Electronics (Institute of Electrical and Electronics Engineers, New York 1980)631
[37] B. C. Grabmaier and F. Otto, “Growth and investigation of MgO-doped LiNbO3”, J. Crystal Growth, 79(1986)682
[38] T. Volk, M. Wöhlecke and N Rubinina, “Optical-damage-resistant impurities (Mg,Zn, In,Sc) in lithium niobate”, Ferroelectrics 183(1996)291
[39] Y. Chen, W. Zhang, Y. Shu, C. Lou, Y. Kong, Z. Huang, J. Xu and G. Zhang, “Determination of the Li/Nb ratio in LiNbO3 crystals prepared by vapor transport equilibration method”, Opt. Mater., 23(2003)295
[40] P. Günter and J. P. Huignard, “Photorefractive Materials and Their Applications I ”, chapter 2, Springer-Verlag, 1988
[41] A. Adibi, K. Buse and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3”, Appl. Phys. B, 72(2001)653
[42] Z. Sun, H. Li, W. Cai, L. Zhao, “Studies of photorefractive fields of MnO and Fe2O3 co-doped near stoichiometric LiNbO3 crystals”, Opt. Mater., 27(2005)1560
[43] K. Buse, A. Adibi and Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals”, Nature 393(1998)665
[44] C.H. Chiang and J.C. Chen, “Growth and properties of Ru-doped lithium niobate crystal”, J. Crys. Growth, 294(2006)323
[45] R.L. Holman, P.J. Cressmann, J.F. Revelli, “Chemical control of optical damage in lithium niobate”, Appl. Phys. Lett., 32(1978)280
[46] Y.S. Luh, M.M. Fejer, R.L. Byer and R.S. Feigelson, “Stoichiometric LiNbO3 Single-crystal Fibers for Nonlinear Optical Applications”, J. Cryst. Growth, 85(1987)264
[47] D.H. Jundt, M. M. Fejer, R.L. Byer, “Optical Properties of Lithium-rich Lithium Niobate Fabricated by Vapor Transport Equilibration”, IEEE J. Quantum Electron, 26(1990)135
[48] P.F. Bordui, R.G. Normood, D.H. Jundt and M.M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals”, J. Appl. Phys., 71(1992)875
[49] Y. Chen, W. Zhang, Y. Shu, C. Lou, Y. Kong, Z. Huang, J. Xu and G. Zhang, “Determination of the Li/Nb ratio in LiNbO3 crystals prepared by vapor transport equilibration method”, Opt. Mater., 23(2003)295
[50] L. Xinan, X. Xu, T.C. Chong, S. Yuan, F. Yu and Y.S. Tay, “Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method”, J. Cryst. Growth, 260(2004)143
[51] A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Bullman, J.J. Levinstein and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3”, Appl. Phys. Lett., 9(1966)72
[52] P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993
[53] P. Yeh, “Contra-directional two-wave mixing in photorefractive media”, Opt. Comm., 45(1983)323
[54] P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps”, J. Opt. Soc. Am. B, 8(1991)1053
[55] J.Y. Chang, M.H. Garrett, P. Tayebati, H.P. Jenssen, and C. Warde “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate”, J. Opt. Soc. Am. B, 12(1995)248
[56] M. Wöhlecke, G. Corradi, and K. Betzler, “Optical Methods to Characterize the Composition and Homogeneity of Lithium Niobate Single Crystals”, Appl. Phys. B, 63(1996)323
[57] L.O. Svaasand, M. Eriksrud, G. Nakken, A.P. Grande, “Solid-solution range of LiNbO3”, J. Crys. Growth, 22(1974)230
[58] Y.S. Luh, R.S. Feigelson, M.M. Fejer and R.L. Byer, “Ferroelectric domain structures in LiNbO3 single crystal fibers”, J. Cryst. Growth 78 (1986)135
[59] J. Chen, Q. Zhou, J.F. Hong, W.S. Wang, N.B. Ming, D. Feng and C.G. Feng, “Influence of growth striations on para-ferroelectric phase transitions: Mechanism ofthe formation of periodic laminar domains in LiNbO3 and LiTaO3”, J. Appl. Phys., 66(1989)336
[60] Ashino, T. and K. Takada, “Determination of Lithium and Niobium in Lithium Niobate by Inductively Coupled Plasma Atomic Emission Spectrometry after Fusion with Ammonium Hydrogensulfate”, Analy. Sci., 9(1993)737
[61] H. Liu, X. Xie, Y. Kong , W. Yan, X. Li, L. Shi, J. Xu, G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron“, Opt. Mater. 28(2006)212
[62] H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun. X. Zhang, G. Zhang, and T. R. Volk, “High sensitivity of photorefractive effect in Indium-doped lithium niobate crystal”, Opt. Mater. 23(2003)269
[63] Y. Furukawa, K. Kitamura and S. Takekawa, “Improved properties of stoichiometric LiNbO3 for electro-optical applications”, J. Intell. Mater. Sys. Struct., 10(1999)470
[64] L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate”, Appl. Phys. Lett., 70(1997)2801
[65] K. Polgár, Ả. Péter, L. Kovács, G. Corradi, Zs. Szaller, “Growth of Stoichiometric LiNbO3 Single Crystals by Top Seeded Solution Growth Method”, J. Cryst. Growth 177(1997)211
[66] H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu and G. Zhang, ”Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron”, Opt. Mater. 28(2006)212
[67] Z. Sun, H. Li, X. Zhen, W. Cai and L.C. Zhao, ”Photorefractive properties of MnO-doped near stoichiometric LiNbO3 crystals”, J. Phys. Chem. Solids, 65(2004)1901
[68] Z. Xu, S. Xu, J. Zhang, X. Liu and Y. Xu, ”Growth and photorefractive properties of In:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios”, J. Crys. Growth, 280(2005)227
[69] I. Nee, M. Müller, K. Buse, and E. Krätzig, ”Role of iron in lithium-niobate crystals for the dark-storage time of holograms”, J. Appl. Phys., 88(2000)4282
指導教授 陳志臣(Jyh-chen Chen) 審核日期 2007-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明