以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:119 、訪客IP:3.147.67.237
姓名 朱恆慶(Heng-Ching Chu) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 0.5M H2SO4中Ti-Cu、Ti-Co二元薄膜觸媒對氧還原之催化反應
(Catalytic activity of Ti-Cu and Ti-Co films for oxygen reduction reaction in 0.5 M sulfuric acid solution)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究由磁控濺鍍法製備不同比例之鈦-銅(Ti-Cu)與鈦-鈷(Ti-Co)金屬二元薄膜觸媒。在0.5M硫酸溶液中,以慢速極化掃描(SSV)、循環伏安法(CV)、旋轉碟型電極(RDE)與塔弗極化作圖法(Tafel-Plot)等電化學技術,來研究其在0.5M H2SO4對氧還原反應(ORR)之催化作用。此外以能量散佈光譜儀(EDS)來分析薄膜所含之元素,以X光光電子質譜儀(XSP)等來解析反應前後薄膜化學狀態之變化,綜合以上結果來探討不同薄膜對氧還原反應。
電化學技術中,SSV結果顯示:Ti-Cu與Ti-Co兩系統對ORR反應均有催化作用。在Ti-Cu系統中,Cu含量約在50~90 atom%之間;在Ti-Co系統中,Co含量約在40~60 atom%之間,均有良好催化效果。由SSV掃描圖中之可以獲得ORR的氧還原之起始電位(Eonset)及其還原電流。比較兩種二元系統之還原起始電位得知:Ti-Cu系統之Eonset(0.6~0.7V)低於Ti-Co系統之Eonset(1V)。系統之Eonset結果顯示,Ti-Cu系統對ORR反應之過電位較大,不如Ti-Co系統。在0V與0.2V電位下之ORR反應之還原電流,且此電流隨Cu、Co濃度增加而增大。在同合金濃度下Ti-Co系統大於Ti-Cu系統,例如在0.2V下Ti50-Cu50系統之還原電流(28.57μA/cm2)低於Ti50-Co50系統之還原電流(272.14μA/cm2)。CV圖譜有助於理解薄膜系統在0.5M H2SO4中之反應結果。CV結果顯示:Ti-Cu系統在第一次掃描中在0.5V處有強且寬的銅的氧化峰出現,此氧化峰為Cu氧化成Cu+和Cu2+。而在第二次掃描中僅在0.3V出現小的峰值,此氧化峰為Cu氧化成Cu2+。相較之下Ti-Co系統在0~1.2V間有對稱之還原及氧化峰,並無其他峰值出現。在0.5M H2SO4中Ti-Co系統比Ti-Cu系統穩定。RDE實驗結果配合Koutecky-Levich方程式可推算ORR反應中參與反應之電子數。在Ti-Cu系統中電子轉移數為4;而Ti-Co系統電子轉移數為3。Tafel極化結果顯示:Ti-Cu與Ti-Co兩系統中各成份之交換電流密度(j0,μA/cm2)大小依序為Co (1.26 x 10-8) > Cu (8.54 x 10-9) > Ti (1.21 x 10-10).摘要(英) Catalytic activity of Ti-Cu and Ti-Co films for oxygen reduction reaction (ORR) in the 0.5M H2SO4 was investigated in this work. Ti-Cu and Ti-Co films in variant compositions were prepared with magnetron sputtering method. Electrochemical technologies such as slow scan voltammetry (SSV), Tafel-Plot (TP), cyclic voltammetry (CV), and rotating disk eelectrode (RDE) were employed to study the electrochemical behavior of the films. Energy dispersive spectrometry (EDS) and x-ray photoelectron spectrometer (XPS) were applied to analyze the composition of the films before and after electrochemical testing.
The results of SSV indicated that both Ti-Cu and Ti-Co films were catalytically active for ORR. Ti-Co films were more active than Ti-Cu. The catalytic activity increases with increasing the concentration of Co (from 40-60 at%) in Ti-Co films and that of Cu (from 50 to 90 at%) in Ti-Cu. With higher catalytic activity, Ti-Co film revealed higher onset potential (i.e., at 1.0 V) than Ti-Cu (i.e., 0.6~0.7V). At a constant potential of 0.2V, a film of Ti50Co50 indicated a greater reduction current density (272.14μA/cm2) than Ti50-Cu50 (i.e., 28.57μA/cm2).
Resulting from CV, there was a strong broad oxidation peak at 0.5V on the first scan cycle of the Ti-Cu films. This peak disappeared on the second cycle and a week small one present at lower potential (i.e., 0.3 V) instead of it. The strong broad peak is ascribed the oxidation of Cu to Cu+ and Cu2+ and the weak small one to only oxidation of Cu to Cu+. The cyclic voltammogram depicted that Ti-Co films revealed only a symmetrical and smooth loop in the potential range from 0 to 1.2V. No any peak was present on the loop. This phenomenon implied that Ti-Co was more stable than Ti-Cu. The instability of Ti-Cu film was due to dissolution of Cu in 0.5M H2SO4. .Using the RDE data and Koutecky-Levich equation, the number of electron transferred in the ORR process was estimated. Almost four electrons were transferred on the Ti-Cu and about three electrons were transferred on the Ti-Co films.
Tafel plot provided the evaluation of exchange current density for ORR. The exchange current density (μA/cm2) decreases in the order Co (1.26 x 10-8) > Cu (8.54 x 10-9) > Ti (1.21 x 10-10).關鍵字(中) ★ 氧還原反應
★ 鈷
★ 電化學觸煤
★ 銅
★ 鈦關鍵字(英) ★ Oxygen reduction reaction
★ electrocatalyst
★ Cobalt
★ Cupper
★ Titania論文目次 中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
第二章 原理與文獻回顧 4
2-1 燃料電池之簡介 4
2.2 PEMFC燃料電池之原理 5
2.3 陰極觸媒氧還原反應(ORR) 7
2.3.1 白金陰極觸媒相關研究 7
2.3.2 非白金陰極觸媒相關研究 9
2.4 氧還原陰極觸媒之電化學分析方法 11
2.4.1 慢速極化掃描(SSV) 11
2.4.2 循環伏安法(CV) 12
2.4.3 旋轉碟型電極(RDE) 13
2.5 觸媒製備方式 15
第三章 實驗方法 16
3.1 實驗流程 16
3.2 試片準備 16
3.3 磁控濺鍍與濺鍍條件 16
3.4 溶液配製 17
3.5 電化學實驗 18
3.6 成份分析儀器 19
第四章 結果 20
4.1 Ti-Cu與Ti-Co二元觸媒薄膜製備與成分分析 20
4.1.1能量散佈光譜儀(EDS)分析 20
4.1.2 Ti-Cu與Ti-Co系統之X光繞射(XRD)分析 20
4.3 慢速極化掃描(SSV) 21
4.3.1 Ti-Cu系統之慢速極化掃描結果 21
4.3.2 Ti-Co系統之慢速極化掃描結果 22
4.4 塔弗極化作圖法(Tafel plot) 23
4.4.1 Ti、Cu、Co之塔弗極化作圖法結果 23
4.4.2 Ti-Cu系統之塔弗極化作圖法結果 23
4.4.3 Ti-Co系統之塔弗極化作圖法結果 23
4.5 旋轉碟型電極(RDE)掃描 24
4.5.1 Ti-Cu系統之旋轉碟型電極掃描結果 24
4.5.2 Ti-Co系統之旋轉碟型電極掃描結果 24
4.6 循環伏安法(CV) 25
4.6.1 Ti、Cu、Co觸媒之循環伏安法結果 25
4.6.2 Ti-Cu系統之循環伏安法結果 26
4.6.3 Ti-Co系統之循環伏安法結果 27
4.7 Cu、Ti-Cu系統之感應偶合電漿原子發射光譜儀(ICP-OES)分析 28
4.8 X光光電子質譜儀(XPS)分析 28
4.8.1 Ti-Cu系統之XPS分析 29
4.8.2 Ti-Co系統之XPS分析 29
第五章 討論 31
5.1 成分比例與觸媒活性之關係 31
5.1.1 Ti-Cu系統成分比例與觸媒活性之關係 31
5.1.2 Ti-Co系統成分比例與觸媒活性之關係 31
5.1.3 Ti-Cu與Ti-Co系統觸媒活性比較 31
5.2 觸媒表面反應之討論 32
5.2.1 Ti、Cu、Co觸媒表面反應之探討 32
5.2.2 Ti-Cu系統表面反應 33
5.2.3 Ti-Co系統表面反應 35
5.3 Ti-Cu與Ti-Co系統之轉移電荷數 36
5.4 陰極塔弗斜率bc、氧交換電流密度i0與觸媒活性之關係 37
5.5 SSV對觸媒元素狀態之影響 38
5.5.1 SSV對Ti-Cu系統元素狀態之影響 39
5.5.2 SSV對Ti-Co系統元素狀態之影響 39
第六章 結論與未來展望 41
6.1 結論 41
6.2 未來展望 42
第七章 參考文獻 43參考文獻 [Bai] Yuxia Bai, Jianjun Wu, Jingyu Xi, Jianshe Wang, Wentao Zhu, Liquan Chen, Xinping Qiu, Electrochemistry Communications, 7, 2005, pp.1087–1090
[Bar] Isa Bar-On, Randy Kirchin, Richard Roth, Journal of Power Sources, 109, 2002, pp.71–75
[Deng] Charles Z. Deng and Michael J. Dignam, J.Electrochem. Soc., 145(10), 1998, pp.3507-3512
[Fer1] Fernandez, J. L.; Walsh, D. A.; Bard, A. J. J. Am. Chem. Soc., 127(1), 2005, pp.357-365
[Fer2] Fernandez, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J., J. Am. Chem. Soc., 127(38), 2005, pp.13100-13101
[Gil] E. Gileadi,鮮祺振,“電極動力學”, 徐氏基金會, 1996
[Hay] Brian E. Hayden, Dzmitry V. Malevich, Derek Pletcher, Electrochemistry Communications, 3, 2001, pp.395-399
[Hu] Feng-Ping Hu , Xiao-Gang Zhang , Fang Xiao , Jun-Ling Zhang, Carbon, 43, 2005, pp.2931–2936
[Hua] 黃鎮江,“燃料電池”, 全華科技圖書股份有限公司, 2004
[Ish] Akimitsu Ishihara, Kunchan Lee, Shotaro Doi, Shigenori Mitsushima, Nobuyuki Kamiya, Michikazu Hara, Kazunari Domen, Kenzo Fukuda,e and Ken-ichiro Ota, Electrochemical and Solid-State Letters, 8(4), 2005, pp.A201-A203
[Ito] T. Itoh and K. Kato, U.S. Patent, 4 970 128, 1990
[Jal] V. Jalan, E.J. Taylor, J. Electrochem. Soc., 130, 1983, p.2299
[Jia] T. Jiang, G.M. Brisard, Electrochimica Acta, 52, 2007, pp.4487-4496
[Joh] John F. Moulder, William F. Stckle, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc., 1995
[Kim] Jin-Hwan Kim, Akimitsu Ishihara, Shigenori Mitsushima, Electrochimica Acta, 52, 2007, pp.2494-2497
[Kor] K.Kordesch, G. Simader,“Fuel Cells and Their Application”, 1996, pp.45-48
[Lee 1] J.H. Lee, T.R. Lalk, A.J.Appleby, Journal of Power Sources, 70, 1998, pp.261
[Lee 2] Kunchan Lee, Akimitsu Ishihara, Shigenori Mitsushima,
Nobuyuki Kamiyaa, Ken-ichiro Ota, Electrochimica Acta, 49, 2004, pp.3479–3485
[Levy] R.B. Levy, M. boudart, Science, 181, 1973, p.547
[Liu] Yan Liu,a Akimitsu Ishihara,a Shigenori Mitsushima,b Nobuyuki Kamiya,a and Ken-ichiro Ota,, Electrochemical and Solid-State Letters, 8(8), 2005, pp.A400-A402
[Lima] F.H.B. Lima, J.F.R. de Castro, Edson A. Ticianelli, Journal of Power Sources, 161, 2006, pp.806–812
[Luc] F.J. Luczak, J. Catal., 43, 1976, p.376
[Mat] Koji Matsuoka, Yasutoshi Iriyama, Takeshi Abe, Masao Matsuoka, Zempachi Ogumi, Journal of Power Sources, 150, 2005, pp.27–31
[Meng] Hui Meng, Pei Kang Shen, Electrochemistry Communications, 8, 2006, pp.588–594
[Muk1] S. Mukerjee, S. Srinivasan, J. Electroanal. Chem., 357, 1993, p.201.
[Muk2] S. Mukerjee, S. Srinivasan, M.P. Soriaga, J. Electrochem. Soc., 142, 1995, p.1409.
[Nal] Nalini P. Subramanian, Swaminatha P. Kumaraguru, Hector Colon-Mercado, Hansung Kimc, Branko N. Popov, Timothy Black, Donna A. Chenb, Journal of Power Sources, 157, 2006, pp.56–63
[Par] EG&G Services, Parsons, Inc. ,Fuel Cell Handbook (5th), 2000
[Patt] M. Pattabi 1, R.H. Castellanos, R. Castillo, A.L. Ocampo, J. Moreira, P.J. Sebastian, J.C. McClure 2, X. Mathew, International Journal of Hydrogen Energy, 26 ,2001 pp.171-174
[Pou] M. Pourbaix, Atlas of electrochemical Equilibria in Alueous Solutions, Pergamon Press Ltd., 1966
[Pra] Jai Prakash , Humberto Joachin, Electrochimica Acta, 45 , 2000, pp.2289–2296
[Rag] Vadari Raghuveer, Arumugam Manthiram, and Allen J. Bard, J. Phys. Chem. B., 109(48), 2005, pp.22909-22912
[Sav] O. Savadogo, K. Lee , K. Oishi , S. Mitsushima , N. Kamiya , K.-I. Ota, Electrochemistry Communications, 6, 2004, pp.105–109
[Shim] J.-P. Shim, J.-S. Lee, Proceedings of the 3rd Korea–ltaly Joint Symposium on Fuel Cell, Taejon, Korea, 1997, p.149.
[Shu] A.K. Shukla, M. Neergat, Parthasarathi Bera, V. Jayaram, M.S. Hegde, Journal of Electroanalytical Chemistry, 504, 2001, pp.111–119
[Tsu] K. Tsurumi, T. Nakamura, A. Sato, U.S. Patent, 4 985 386 , 1991
[Wan] Mei, Wang, Dao-jun Guo, Journal of Solid State Chemistry, 178, 2005, pp.1996-2000
[Wang] 汪建民,“材料分析”,中國材料科學學會, 2004
[Xio] L. Xiong, A.M. Kannan, A. Manthiram, Electrochemistry Communications, 4, 2002, pp.898–903
[Yi] 衣寶廉,“燃料電池-原理與應用”,五南出版社, 2003指導教授 林景崎(Jin-Chi Lin) 審核日期 2007-7-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare