博碩士論文 953203030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.118.28.217
姓名 陳建瑋(Chien-wei Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
(Effects of cross-channel extrusion process and scandium on microstructure and mechanical properties of the Al-5.6Mg-0.7Mn alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究
★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究
★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究
★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響★ 微量Sc對A356鑄造鋁合金機械性質之影響
★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 分流擠型(cross-channel extrusion process,CCEP)為本實驗室自行開發之等截面劇烈加工製程,本製程除保有等通道轉角擠型(equal channel angular extrusion,ECAE)等截面加工之特色外,亦能連續加工至指定道次再將材料取出,具有累積應變均勻散佈第二相之效果,因而製造極細晶粒(ultra-fine grain,UFG)材料。
本研究擬於Al-5.6Mg-0.7Mn合金中添加微量(0.3wt.%)Sc元素,鑄造時即能形成細小且均勻散佈之Al3Sc相,期望藉由自行開發之分流擠型來產生細晶且具高溫穩定之微結構,並於高溫下測試其超塑性以評估含Sc之Al-5.6Mg-0.7Mn之熱加工性。
結果顯示合金經分流擠型於300℃下擠製六道次,能獲得晶粒尺寸為1~2μm之細晶微結構,且大幅提升機械性質。含0.3wt.%Sc合金中會產生L12結構之Al3Sc相,能有效抑制再結晶並提高合金之熱穩定性,於500℃下退火一小時仍維持等軸細小之再結晶晶粒,且經分流擠型擠製六道次,於450℃、應變速率為1x10-1s-1下進行高溫拉伸能獲得最大伸長量為873%。
摘要(英) Cross-channel extrusion (CCE) is a new method which is designed to improve the process of manufacturing a bulk fine-grained material. The material can be deformed in the cross-shaped channel repeatedly without removing during extrusion time. The CCE process is potentially appropriate for industry application because of its continuing working ability.
The purpose of this study is to investigate the effects of CCE process and scandium on microstructure and mechanical properties of the Al-5.6Mg-0.7Mn alloys.
The result indicate that Al-5.6Mg-0.7Mn alloys with and without 0.3wt.% Sc after extrusion 6 passes at 300 ℃, fine-grained structures were observed with grain sizes of 1~2 μm and improvement of mechanical properties. Addition of Sc to Al-5.6Mg-0.7Mn alloys resulted in a uniform distribution of fine coherent Al3Sc precipitates which effectively pinned grain boundary to obtained equiaxed and fine grain after annealing 1hr at 500 ℃. The maximum elongation to failure of 873% was achieved at 450 ℃ and initial strain rate of 1x10-1 s-1 in an Al-5.6Mg-0.7Mn-0.3Sc alloy extruded by CCEP 6 passes at 300 ℃.
關鍵字(中) ★ 分流擠型
★ 鋁鎂合金
★ 超塑性
關鍵字(英) ★ cross-channel extrusion process
★ Al-Mg alloy
★ superplasticity
論文目次 中文摘要..........................................................i
英文摘要.........................................................ii
誌 謝........................................................iii
總 目 錄.........................................................iv
圖 目 錄........................................................vii
表 目 錄.........................................................ix
一、 前言...............................................1
1.1 Al-Mg合金簡介......................................1
1.2 超塑性.............................................1
1.2.1 細晶超塑性.........................................2
1.2.2 內應力超塑性.......................................2
1.3 Sc對鋁合金之影響...................................3
1.3.1 晶粒細化...........................................3
1.3.2 抑制再結晶.........................................4
1.3.3 提高超塑性.........................................4
1.4 加工方式...........................................5
1.4.1 累積軋延結合(accumulative roll bonding)............5
1.4.2 往復式擠型(reciprocating extrusion)................5
1.4.3 等通道轉角擠型(equal channel angular extrusion,
ECAE)..............................................6
1.4.4 分流擠型(cross channel extrusion process,CCEP)....7
1.5 實驗目的與設計.....................................8
二、 實驗步驟與方法.....................................9
2.1 合金配置、分流擠型與退火處理.......................9
2.1.1 合金配製與成分分析.................................9
2.1.2 分流擠型...........................................9
2.1.3 退火處理...........................................9
2.2 微結構分析........................................11
2.2.1 金相觀察(OM)......................................11
2.2.2 穿透式電子顯微鏡觀察(TEM).........................11
2.3 機械性質分析......................................11
2.3.1 硬度試驗..........................................11
2.3.2 常溫拉伸試驗......................................11
2.3.3 高溫拉伸試驗......................................12
2.3.4 拉伸試片觀察......................................12
三、 結果與討論........................................14
3.1 微結構分析........................................14
3.1.1 鑄態及擠製後金相觀察..............................14
3.1.2 穿透式電子顯微鏡觀察..............................18
3.1.3 退火金相觀察......................................19
3.2 機械性質分析......................................21
3.2.1 硬度試驗..........................................21
3.2.1.1 鑄態及CCEP擠製....................................21
3.2.1.2 退火處理..........................................22
3.2.2 常溫拉伸試驗......................................24
3.2.3 高溫拉伸試驗......................................24
四、 結論..............................................34
五、 未來研究方向......................................35
六、 參考文獻..........................................36
參考文獻 〔1〕 R. Verma, et al., “Grain refinement and superplasticity in 5083 Al”, Materials Science and Engineering A, pp.143-150, 1995.
〔2〕 D.Y. Maeng, et al., “The effect of transition elements on the superplastic behavior of Al-Mg alloys”, Materials Science and Engineering A, pp.188-195, 2003.
〔3〕 M. Furukawa, et al., “Influrnce of magnesium on grain refinement and ductility in a dilute Al-Sc alloy”, Acta Materialia, Vol.49, pp.3829-3838, 2001.
〔4〕 F. Musin, et al., “High strain rate superplasticity in a commercial Al-Mg-Sc Alloy”, Scripta Materialia, 50, pp.511-516, 2004.
〔5〕 S. Lee, et al., “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys”, Acta Materialia, 50, pp.553-564, 2002.
〔6〕 A. F. Noraman, P. B. Prangnell and R. S. McEwen, “The Solidification Behavior of Dilute Aluminum-Scandium Alloys.”, Acta Materialia, Vol.46, pp.5715-5732, 1998.
〔7〕 A. K. Mukherjee, “Superplasticity in metals, ceramics and intermetallics”, in Superplastic Forming of a Symposium, ASM, pp.408-460, 1985.
〔8〕 K. Higashi, et al., “Effect of liquid phases on the tensile elongation of superplastic aluminum alloys and composites”, Scripta Materialia, Vol.32, pp.1079-1084, 1994.
〔9〕 Marc Andre Meyers and Krishan Kumar Chawla, “Mechanical behavior of materials”, Prentice Hall, p.126, 1999.
〔10〕 O. D. Sherby and J. Wadsworth, “Superplastic-recent advances and future direction”, Progress In Materials Science, Vol.33, pp.169-221, 1989.
〔11〕 J. Wadsworth, J. H. Lin and O. D. Sherby, “Superplasticity in tool steel”, Metals Technology, Vol.8, pp.190-193, 1981.
〔12〕 P. Zwigl and D. C. Dunand, “A non-liner model for internal stress superplasticity”, Acta Metallurgica, Vol.45, pp.5285-5294, 1997.
〔13〕 R. C. Lobb, E. C. Sykes and R. H. Johnson, “Internal Stress Superplasticity in Some Materials”, Materials Science and Engineering, Vol.19, pp.6, 1972.
〔14〕 O. A. Ruano, J. Wadsworth and O. D. Sherby, “Enhanced densification of white cast iron powders by cyclic phase-tranformations under stress”, Metallurgical Transactions, A13, p.355, 1982.
〔15〕 C. schuh and D. C. Dunand, “Contributions to transformation superplasticity of titanium from rigid particles and pressurized pores”, Scipta Materialia, Vol.40, pp.1305-1312, 1999.
〔16〕 M. A. Munoz-Morris, et al., “Microstructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing”, Materials Science and Engineering, A375-377, pp.853-856, 2004.
〔17〕 K. Venkateswarlu, et al., “Microstructure, tensile strength and wear behaviour of Al-Sc alloy”, Material Science and Engineering, A383, pp.374-380, 2004.
〔18〕 Kyung-Tae Park, et al., “High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Material Science and Engineering, A341, pp.273-281, 2003.
〔19〕 Vladivoj Ocenasek and Margarita Slamova, “Resistence to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, 47, pp.157-162, 2001.
〔20〕 Zhimin Yin, et al., “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Mg based alloys”, Material Science and Engineering, A280, pp.151-155, 2000.
〔21〕 Z. Horita, et al., “Superplastic forming at high strain rates after severe plastic deformation”, Acta Materialia, 48, pp.3633-3640, 2000.
〔22〕 B. K. Min, H. W. Kim and S. B. Kang, “Effect of Al3Sc precipitate on the microstructural evolution during accumulative roll bonding in Al-0.2wt.% Sc alloy", Journal of Materials Processing Technology, Vol.162-163, pp.355-361, 2005.
〔23〕 Shih-Wei Lee and J.W. Yeh, “Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion”, Materials Science and Engineering A, pp.409-419, 2007.
〔24〕 Jien-wei Yeh, Shi-Ying Yuan and Chao-Hung Peng, “A reciprocating extrusion process for producing hypereutectic Al-20wt.% Si wrought alloys”, Materials Science and Engineering A, vol.252, pp.212-221, 1998.
〔25〕 V. M. Segal, “Materials processing by simple shear”, Material Science and Engineering, A197, pp.157-164, 1995.
〔26〕 Cheng-Yu Chou, Sheng-Long Lee, Jing-Chie Lin and Ching-Miow Hsua, “Effect of cross-channel extrusion on the microstructures and superplasticity of a Zn-22 wt.% Al eutectoid alloy”, Scripta Materialia, Vol.57, pp.972-975, 2007.
〔27〕 Cheng-Yu Chou, Sheng-Long Lee and Jing-Chie Lin, “Effects and deformation characteristics of cross-channel extrusion process on pure Sn and Al–7Si–0.3Mg alloy”, Materials Chemistry and Physics, Vol.107, Issues 2-3, pp.193-199, 2008.
〔28〕 Cheng-Yu Chou, Sheng-Long Lee and Jing-Chie Lin, “Effects of cross-channel extrusion on microstructure and mechanical properties of AA6061 aluminum alloy”, Materials Science and Engineering A, pp .461-467, 2007.
〔29〕 Anumalasetty Venkata Nagasekhar and Hyoung Seop Kim, “Plastic deformation characteristics of cross-equal channel angular pressing”, Computational Materials Science, Available online 14 April 2008.
〔30〕 Sheng-Long Lee and Shinn-Tyan Wu, “Identification of dispersoids in Al-Mg alloys containing Mn”, Metallurgical and Materials Transactions. A, Vol.18, pp.1353-1357, 1987.
〔31〕 Sheng-Long Lee and Shinn-Tyan Wu, “Influence of soaking treatment on hot ductility of Al-4.85 pct Mg alloys containing Mn”, Metallurgical and Materials Transactions. A, Vol.17, pp.833-841, 1986.
〔32〕 Furukawa M, et al., “Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size”, Acta Materialia, Vol.44, pp.4619-4629, 1996.
〔33〕 T. G. Nieh, et al., “High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy”, Acta Materialia, Vol.46, pp.2789-2800, 1998.
〔34〕 R. Kaibyshev, et al., “High stain rate superplasticity in an Al-Mg-Sc-Zr alloy subjected to simple thermomechanical processing”, Scripta Materialia, Vol.54, pp.2119-2124, 2006.
指導教授 李勝隆(Sheng-long Lee) 審核日期 2008-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明