博碩士論文 953203040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.119.102.137
姓名 李尚軍(Shang-chun Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 火花引燃機制與散佈狀燃燒型態之實驗研究
(An Experimental Study on Spark Ignition Mechanism and Distributed Combustion Mode)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用CMOS高速、高解析度攝影機配合雷射斷層掃描攝影術(laser tomography, LT),首度提供預混紊流燃燒之散佈狀燃燒區域(distributed combustion regime)的火核及火焰影像證據,並定量量測最小引燃能量(minimum ignition energy, MIE)隨紊流強度增加之上升曲線,以了解MIE值在薄碎狀(flamelet)和散佈狀兩種截然不同燃燒區域之變化情形。實驗採用不同當量比(equivalence ratio, φ)之甲烷/空氣預混燃氣,並於十字型紊流燃燒器內執行。燃燒器內流場是由置於水平圓管兩端之一對反向旋轉特製風扇所產生,當對衝流場各通過一空孔板後,可在燃燒器中央觀測區產生一零平均速度之等向性紊流場,其紊流強度(u’’)最高約可達8 m/s,相對應之ReT = u’’LI/nu? = 24,850,其中LI與nu分別為流場積分長度尺度和流體運動黏滯係數。引燃能量的控制採用Velonex 360高功率脈衝放電系統,而MIE值則透過Tektronix P6015A高電壓探針與Pearson電流感測器同步量測後計算而得。我們發現所謂的薄碎焰模式時,火核影像都呈超環面形狀,此時MIE值隨u’’增加而呈線性增加。當在散佈狀燃燒模式時,火核則以破碎狀且不規則的形式呈現,其相對應之MIE值隨u’’增加而呈指數型式增加。此結果顯示於紊流條件下之MIE值存有一轉變(transition)現象,並與薄碎焰過渡到散佈狀火焰相關。利用LT火焰面影像,沿著火焰傳遞方向進行灰階強度分析可以發現,在MIE值轉變前反應物與生成物之間呈明暗灰階快速變化,代表火焰厚度非常薄;但在MIE值轉變之後,反應物與生成物之灰階呈散佈狀分布,由此我們知道火焰已由原本之薄碎狀火焰轉變為散佈狀火焰,此結果可作為散佈狀火焰存在之實驗證據。另外,本研究也量測評估加氫效應對於火焰傳遞速度(flame propagation speed, SF)的影響與添加CO2對於MIE值的影響。前述實驗結果對预混紊流燃燒領域具有重要之學術價值,並可應用於諸如燃氣輪機和汽車引擎等燃燒設計。
摘要(英) This study aims to measure a transition on values of minimum ignition energy (MIE) divides two distinct combustion modes, namely flamelet and distributed regimes in premixed turbulent combustion particular interest is on the flame kernel formation and its subsequent flame propagation before and after the MIE transition. Lean methane/air premixtures at various equivalence ratios (φ) were studied and all experiments were carried out in a large cruciform burner. The burner consists of a pair of counter-rotating fans at each end of the horizontal vessel, capable of generating in tense isotropic turbulence with negligible mean velocities and the maximum value of turbulent intensities (u’’) as high as 8 m/s where the corresponding Reynolds number ReT = LIu’’/nu? ? 24850. LI and nu?are the integral length scale of turbulence measured by LDV and PIV and the kinematic viscosity of reactants. The ignition source was controlled by the Velonex 360 high power pulse generator, where values of MIE were calculated from direct measurements of temporal variations of concurrent voltages and currents using a Tektronix high-voltage probe and a Pearson current transducer. We found that flame kernels remain regular and toroidal shape before the MIE transition, but after the MIE transition it is found that flame kernels become irregular and disrupted. Using the laser tomography (LT) to obtain developing turbulent flames, a drastic change of turbulent flame structures before and after MIE transition is observed. Before transition, the gray level distribution across the LT flame front image has vary sharp variation indicating that such flame front is very thin and is in the regime of turbulent-flamelet. After transition, the gray level distribution becomes distributed-like showing the existence of turbulent distributed flames. Finally, the effect of hydrogen addition on turbulent burning velocities and the effect of CO2 addition on values of MIE are also discussed. These results are important for the understanding of premixed turbulent combustion.
關鍵字(中) ★ 散佈狀火焰
★ 最小引燃能量
★ 轉變
★ 紊流薄碎狀火焰
關鍵字(英) ★ minimum ignition energy
★ transition
★ turbulent-flamelet
★ distributed flames
論文目次 摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖目錄 VII
符號說明 IX
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 3
1.3 解決方案 4
1.4 論文架構 6
第二章 文獻回顧 7
2.1 影響MIE值的相關參數 7
2.1.1 燃氣初始壓力及溫度 7
2.1.2 燃氣?值與可燃極限 7
2.1.3 電極材料 8
2.1.4 電極直徑與電極的幾何外型 8
2.1.5 電極間距與熄滅距離 9
2.2 火焰傳遞速度與預混紊流燃燒理論 10
2.2.1 Huygen’s 傳遞理論 11
2.2.2 預混紊流燃燒狀態圖 11
2.3 雷射斷層掃描術(laser tomography) 13
2.4 氫能之應用 14
第三章 實驗設備與量測方法 21
3.1 十字型預混紊流燃燒器 21
3.2 高功率脈衝放電系統 22
3.3 影像擷取系統 23
3.4 雷射斷層掃描 23
3.4.1 雷射頁面 23
3.4.2 油霧粒子 24
3.5 放電能量與火焰傳遞的計算及雷射斷層掃描之分析 24
3.6 實驗流程 26
3.7 誤差分析 26
第四章 結果與討論 33
4.1 影響引燃機制之參數 33
4.1.1 流場型態對於MIE值的影響 33
4.1.2 輻射熱損失對於MIE值的影響 34
4.2 影響火核發展之參數 34
4.2.1 引燃能量與火核發展之關係 35
4.2.2 不同流場型態之火核發展 35
4.3 在不同流場型態下雷射斷層掃描之分析 36
4.4 加氫效應 37
4.4.1 加氫效應對於火焰傳遞速度(SF)的影響 37
第五章 結論與未來工作 51
5.1 結論 51
5.2 應用 52
5.3 未來工作 52
參考文獻 54
參考文獻 [1]Energy Information Administration, Annual Energy Outlook 2007 with Projections to 2030, Rep. No. DOE/EIA-0383 (2007).
[2]黃朝祺,“貧油甲烷預混紊流燃燒最小引燃能量量測”,國立中央大學機械工程研究所,碩士論文,2006年。
[3]石偉達,“預混紊流燃燒:火花引燃機制與加氫效應之定量量測”,國立中央大學能源工程研究所,碩士論文,2007年。
[4]Correa, S., “Current Problems in Gas Turbine Combustion”, Fall Technical Meeting, The Combustion Institute, Eastern States Section, Dec. 3-5, Orlando, FL (1990).
[5]Ballal, D. R. and Lefebvre, A. H., “Ignition and Flame Quenching in Flowing Gaseous Mixtures”, Proc. R. Soc. Lond. A 357, 163-181(1977).
[6]Moorhouse, J., Williams, A. and Maddison, T. E., “An Investigation of the Minimum Ignition Energies of Some C1 to C7 Hydrocarbons”, Combust. Flame 23, 203-213 (1974).
[7]Weinrotter, M., Kopecek, H., Wintner, E., Lackner, M. and Winter, F., “Application of Laser Ignition to Hydrogen-Air Mixtures at High Pressures”, Int. J. Hydrog. Energy 30, 319-329 (2005)
[8] Lewis, B. and von Elbe, G., Combustion, Flame and Explosions of Gases, 3rd Ed., Academic Press, London (1987).
[9]Ziegler, G. F. W., Wagner, E. P. and Maly, R. R., “Ignition of Lean Methane-Air Mixtures by High Pressure Glow and Arc Discharges”, Proc. Combust. Inst. 20, 1817-1824 (1984).
[10]Kono, M., Hatori, K. and Iinuma, K., “Investigation on Ignition Ability of Composite Sparks in Flowing Mixtures”, Proc. Combust. Inst. 20, 1643-1649 (1984).
[11]Scull, W. E., “Relation Between Inflammables and Ignition Sources in Aircraft Environments”, NACA TN-2227 (1951).
[12]Shy, S. S., Lin, W. J. and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion”, Proc. R. Soc. Lond. A 456, 1997-2019 (2000).
[13]Kitagawa, T., Ogawa, T. and Nagano, Y., “The Effects of Pressure on Unstretched Laminar Burning Velocity, Markstein Length and Cellularity of Spherically Propagating Laminar Flames”, COMODIA, August 2-5, Japan (2004).
[14]Bradley, D., Haq, M. Z., Hicks, R. A., Kitagawa, T., Lawes, M., Sheppard, C. G. W. and Woolley, R., “Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition”, Combust. Flame 133, 415-430 (2003).
[15]Huang, Z., Zhang, Y., Zeng, K., Liu, B. and Wang, Q., “Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures”, Combust. Flame, 146 302-311(2006)
[16]Bradley, D., Gaskell, P. H. and Gu, X. J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flame: A Computational Study”, Combust. Flame 104, 176-198 (1996).
[17]Damköhler, G., “The Effect of Turbulent on the Flame Velocity in Gas Mixtures”, Z. Elektrchem. 46, 601-652 (1940). (English translation NASA Tech. Mem. 1112, (1947).
[18]Borghi, R., “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, 117-138, New York, Plenum (1985).
[19]Bray, K. N. C., “Turbulent Flows with Premixed Reactants”, Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., 115-183, New York, Springer-Verlag (1980).
[20]Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst. 21, 1231-1250 (1986).
[21]Williams, F. A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City (1985).
[22]Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge (2000).
[23]Boyer, L., “Laser Tomographic Method for Flame Movement Studies”, Combust. Flame 39, 321-323 (1980)
[24]Chew, T. C., Britter, R. E. and Bray, K. N. C., “Laser Tomography of Turbulent Premixed Bunsen Flames”, Combust. Flame 75, 165-174 (1989).
[25]Veynante, D., Duclos, J. M. and Piana, J., “Experiment Analysis of Turbulent Combustion”, 25th Symposium (Internal ) on Combustion, The Combustion Institute, Pittsburgh, Leeds, 1249-1256 (1994).
[26]Karim, G. A., Wierzba, I. and Al-Alousi, Y., “Methane-Hydrogen Mixture as Fuels”, Int. J. Hydrogen Energy 21, 625-631 (1996).
[27]Kido, H., Huang, S., Tanoue, K. and Nitta, T., “Improving the Combustion Performance of Lean Hydrocarbon Mixtures by Hydrogen Addition”, JSAE. Review 15, 165-170 (1994).
[28]Ilbas, M., Crayford, A. P., Yılmaz, İ., Bowen, P. J. and Syred, N., “Laminar-Burning Velocities of Hydrogen-Air and Hydrogen-Methane-Air Mixtures: An Experimental Study”, Int. J. Hydrog. Energy 31, 1768-1779 (2006).
[29]尹偉光,”預混紊流燃燒:風扇擾動是燃燒器之冷流場量測及其未來發展”,國立中央大學機械工程研究所,碩士論文,1996年。
[30]Shy, S. S., Lee, E. I., Cheng, N. W. and Yang, S. I., “Direct and Indirect Measurements of Flame Surface Density, Orientation, and Curvature for Premixed Turbulent Combustion Modeling in a Cruciform Burner”, Proc. Combust. Inst. 28, 383-390 (2000).
[31]Yang, S. I. and Shy, S. S., “Global Quenching of Premixed CH4/Air Flame: Effects of Turbulent Straining Equivalence Ratio, and Radiative Heat Loss”, Proc. Combust. Inst. 29, 1841-1847 (2002).
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明