博碩士論文 953203041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:52.15.72.229
姓名 蔣政栓(Zheng-shuan Jiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 吸附式空調系統微多孔表面蒸發/冷凝器蒸發熱傳性能增強研究
(nono)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ HFC-134a與HFO-1234yf 在板式熱交換器中流動沸騰之性能比較★ 油冷卻器熱傳與壓降性能實驗分析
★ 水對冷媒R22在板式熱交換器內之性能測試分析★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較
★ 油冷卻器性能測試分析與比較★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試
★ 水對空氣在板式熱交換器之性能測試分析★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析
★ 微熱交換器之設計與性能測試★ 板式熱交換器之入出口壓降實驗分析
★ 液體冷卻系統中之微熱交換器性能分析與改良★ 直接模擬蒙地卡羅法於高低速流場之模擬
★ 液體微熱交換器之熱傳增強研究★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要利用微多孔表面熱傳增強技術在吸附式空調系統內之蒸發/冷凝器上,並測試其性能及分析。加熱表面的成核孔洞量越多,會有較高的氣泡密度,使其熱傳性能可以增加。
工作流體為水,而甲醇為冷媒,實驗平滑板與微多孔板其熱傳性能。
我們能利用其微多孔表面熱傳增強特性,設計固體吸附式空調系統內之蒸發/冷凝器,使其體積能有效的大幅縮小。
摘要(英) The main purpose of this research is to use micro-porous heat transfer enhancement technology on evaporators/condensers in the absorption air conditioning system. More nuclear ,higher . And the heat transfer performance can be better. The working fluid is water, and the refrigerator is methanol. Teat the heat transfer performance of plain plate and micro-porous surface. Use micro-porous technology to design evaporators/condensers in adsorption air conditioning system and make the total volume of the heat exchanger smaller.
關鍵字(中) ★ 吸附式空調系統
★ 蒸發/冷凝器蒸
關鍵字(英) ★ absorption air conditioning system
論文目次 摘要 i
目錄 ii
表目錄 iv
圖目錄 v
符號說明 vii
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 7
2.1 固體吸附式空調系統 7
2.2固體吸附式空調系統之蒸發/冷凝器 8
2.3 池沸騰熱傳 10
2.4核沸騰熱傳增強 10
2.5多孔表面熱傳增強 12
2.6微多孔表面熱傳增強 14
2.7粒徑與厚度對熱傳性能的影響 15
2.8製作方式對熱傳性能的影響 16
2.9總結 17
第三章 實驗方法 30
3.1 實驗系統 30
3.1.1 環路系統 30
3.2 實驗量測設備 31
3.2.1溫度測量 31
3.2.2 流量量測 32
3.2.3 壓力量測 33
3.2.4 資料擷取系統 33
3.3 實驗板片的製作 33
3.3.1微多孔表面板片的製作參數 34
3.4 實驗方法 36
3.4.1 系統填充甲醇 36
3.4.2 實驗操作步驟 36
3.5 實驗資料換算 37
第四章 實驗結果與討論 52
第五章 結論 63
參考文獻 64
附 錄 66
參考文獻 Barthau, G., 1992, “Active nucleation site density and pool boiling heat transfer,” International Journal of Heat and Mass Transfer, Vol. 35, No. 2, pp. 271-278.
Chang, J. Y. and You, S. M., 1996, “Heater Orientation Effects on Pool Boiling of Microporous-Enhanced Surfaces in Saturated FC-72,” ASME J. Heat Transfer, Vol. 118, No. 4, pp. 937–943.
Chang, J. Y. and You, S. M., 1997, “Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated FC-72,” Int. J. Heat Mass Transfer. Vol. 40, No. 18, pp. 4437-4447.
Chang, J.Y., and You, S.M., 1997, “Enhanced boiling heat transfer from micro-porous surfaces: effects of a coating composition and method,” Int. J. Heat Mass Transfer. Vol. 40, No. 18, pp. 4449–4460.
Chang, W. S., Wang, C. C., and Shieh, C. C., 2007, “Experimental study of a solid adsorption cooling system using flat?tube heat exchangers as adsorption bed”, Applied Thermal Engineering, Vol. 27, pp. 2195?2199.
Cieslinski, J. T., 2002, “Nucleate pool boiling in porous metallic coatings,” Experiment Thermal and Fluid Science, Vol. 25, pp. 557-564.
Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Third Edition. Oxford University Press New York. Chapter 4, pp. 148-151.
Cooper, M.G., 1984, “Saturation nuclear pool boiling – a simple correlation,” International Chemical Engineering Symposium Series, Vol. 86, pp. 785-792.
Dizon, M. B., Yang, J., Cheung, F. B., Rempe, J. L., Suh, K. Y. and Kim, S. B., 2004, “Effects of Surface Coating on the Critical Heat Flux for Pool Boiling from a Downward Facing Surface,” Journal of Enhanced Heat Transfer, Vol. 11, pp. 133-150.
Fan, C.-F. and Yang, C.-Y., 2006, “Pool Boiling of Refrigerants R-134a and R-404A on Porous and Structured Tubes – Part I, Visualization of Bubble Dynamics,” Journal of Enhanced Heat Transfer, Vol. 13 pp. 85-97.
Hsieh, S. S., and Weng, C. J., 1997, “Nucleate Pool Boiling From Coated Surfaces In Saturated R-134a And R-407c” Int. J. Heat and Mass Transfer, Vol. 40, No. 3, pp. 519-532.
Hwang, G. S., and Kaviany, M., 2005, “Critical heat flux in thin, uniform particle coatings” Int. J. Heat and Mass Transfer, Vol. 49,pp.844-849.
Nakayama, W., Daikoku, T., and Nakajima, T., 1982, “Effects of pore diameters and system pressure on saturated pool nucleate boiling heat transfer from porous surfaces,” Journal of Heat Transfer, Vol. 104, pp. 286-291.
O’Connor, J. P., and You, S. M., 1995 “A Painting Technique to Enhance Pool Boiling Heat Transfer in FC-72,” ASME J. Heat Transfer, Vol. 117, No. 2, pp. 387-393.
Stephan, K., and Abdelsalam, M., 1980, “Heat-transfer correlations for natural convection boiling,” Int. J. Heat and Mass Transfer, Vol. 23, pp. 73-87.
Webb, R. L., “Principles of Enhanced Heat Transfer” 2th, Taylor & Francis, New York, 2005.
Yang, C.-Y. and Fan, C.-F., 2006, “Pool Boiling of Refrigerants R-134a and R-404A on Porous and Structured Surface Tubes – Part II, Heat Transfer Performance,” Journal of Enhanced Heat Transfer, Vol. 13, pp. 65-84.
Yang, J. and Cheung, F. B., 2005, “A Hydrodynamic CHF Model for Downward Facing Boiling on a Coated Vessel,” Int. J. Heat and Fluid Flow, Vol. 26, pp. 474-484.
謝鎮州、張文師、王智正、唐震宸,2004,”運用工業廢熱之固體吸附式製冷系統”,化工技術第133期,pp. 149?164
鄭喬鴻,2005,” 微鰭管應用於吸附空調系統蒸發/冷凝器之性能實驗探討”
指導教授 楊建裕(nono) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明