參考文獻 |
[1] 劉哲銘,以熱交換器法生長氧化鋁單晶與晶體檢測,國立中央大學,碩士論文,民國88年。
[2] 呂中偉,以熱交換器法生長氧化鋁單晶之模擬分析,國立中央大學,博士論文,民國91年。
[3] 朱信旗,電磁式感應加熱柴式法生長氧化鋁單晶過程之數值模擬分析,國立中央大學,碩士論文,民國97年。
[4] 陳建宏,柴式法生長氧化鋁單晶過程最佳化熱流場之分析,國立中央大學,碩士論文,民國97年。
[5] J. A. Savage, Preparation and properties of hard crystalline materials for optical applications-a review, Journal of Crystal Growth, vol.113, Pages 698-715 (1991).
[6] 陳智勇,柴式法生長鈮酸鋰塊晶之研究分析,國立中央大學,碩士論文,民國93年。
[7] J. Czochralski, Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle, Zeitschrift für Physikalische Chemie, vol.92, pages 219-221 (1918).
[8] G. K. Teal and J. B. Little, Growth of germanium single crystals, Physical Review, vol.78, page 647 (1950).
[9] H. E. Buckley, Crystal Growth, John Wiley and Sons Inc., New York (1951).
[10] J. J. Derby and R. A. Brown, Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growthⅠ.Simulation, Journal of Crystal Growth, vol.74, pages 605-624 (1986).
[11] J. J. Derby and R. A. Brown, Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅱ.Processing strategies, Journal of Crystal Growth, vol.75, pages 227-240 (1986).
[12] F. Dupret, Y. Ryckmans, P. Wouters and M. J. Crochet, Numerical calculation of the global heat transfer in a Czochralski furnace, Journal of Crystal Growth, vol.79, pages 84-91 (1986).
[13] T. Tsukada, N. Imaishi and M. Hozawa, Theoretical Study of the Flow and Temperature Fields in CZ Single Crystal Growth, Journal of Chemical Engineering, vol.21, pages 184-191 (1988) .
[14] F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters and M. J. Crochet, Global modeling of heat transfer in crystal growth furnaces, International Journal of Heat and Mass Transfer, vol.33, pages 1849-1871 (1990).
[15] T. Tsukada, M. Hozawa and N. Imaishi, Global analysis of transfer in CZ crystal growth of oxide, Journal of Chemical Engineering, vol.27, pages 25-31 (1994) .
[16] N. Miyazaki, H. Uchida, T. Tsukada and T. Fukuda, Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis, Journal of Crystal Growth, vol.162, pages 83-88 (1996).
[17] T. Tsukada, K. Kakinoki, M. Hozawa, N. Imaishi, K. Shimamura and T. Fukuda, Numerical and experimental studies on crack formation in LiNbO3 single crystal, Journal of Crystal Growth, vol.180, pages 543-550 (1997).
[18] Z. Galazka and H. Wilke, Influence of Marangoni convection on the flow pattern in the melt during growth of Y3Al5O12 single crystals by the Czochralski method, Journal of Crystal Growth, vol.216, pages 389-398 (2000).
[19] Z. Galazka and H. Wilke, Heat transfer and fluid flow during growth of Y3Al5O12 single crystals using the Czochralski method, Crystal Research and Technology, vol.35, pages 1263–1278 (2000).
[20] M. Kobayashi, T. Hagino, T. Tsukada and M. Hozawa, Effect of internal radiative heat transfer on interface inversion in Czochralski crystal growth of oxides, Journal of Crystal Growth, vol.235, pages 258-270 (2002).
[21] M. Kobayashi, T. Tsukada and M. Hozawa, Effect of internal radiation on thermal stress fields in CZ oxide crystals, Journal of Crystal Growth, vol.241, pages 241-248 (2002).
[22] A. Hayashi, M. Kobayashi, C. Jing, T. Tsukada and M. Hozawa, Numerical simulation of the Czochralski growth process of oxide crystals with a relatively thin optical thickness, International Journal of Heat and Mass Transfer, vol.47, pages 5501-5509 (2004).
[23] M. H. Tavakoli and H. Wilke, Numerical study of induction heating and heat transfer in a real Czochralski system, Journal of Crystal Growth, vol.275, pages e85-e89 (2005).
[24] M. H. Tavakoli and H. Wilke, Numerical study of heat transport and fluid flow of melt and gas during the Seeding Process of Sapphire Czochralski crystal growth, Crystal Growth & Design, vol.7, pages 644-651 (2007).
[25] J. Banerjee and K. Muralidhar, Simulation of transport processes during Czochralski growth of YAG crystals, Journal of Crystal Growth, vol.286, pages 350–364 (2006).
[26] M. H. Tavakoli and H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed, Crystal Research and Technology, vol.42, pages 544–557 (2007).
[27] M. H. Tavakoli and H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 2: rotating seed, Crystal Research and Technology, vol.42, pages 688–698 (2007).
[28] M. H. Tavakoli, H. Wilke, and N. Crnogorac, Influence of the crucible bottom shape on the heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth, Crystal Research and Technology, vol.42, pages 1252–1258 (2007).
[29] M. H. Tavakoli, Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth, Journal of Crystal Growth, vol.310, pages 3107-3112 (2008).
[30] S. E. Demina, E. N. Bystrova, V. S. Postolov, E. V. Eskov, M. V. Nikolenko, D. A. Marshanin, V. S. Yuferev and V. V. Kalaev, Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method, Journal of Crystal Growth, vol.310, pages 1443–1447 (2008).
[31] M. H. Tavakoli, A. Ojaghi, E. Mohammadi-Manesh and M. Mansour, Influence of coil geometry on the induction heating process in crystal growth systems, Journal of Crystal Growth, vol.311, pages 1594–1599 (2009).
[32] M. Asadian, S. H. Seyedein, M. R. Aboutalebi and A. Maroosi, Optimization of the parameters affecting the shape and position of crystal–melt interface in YAG single crystal growth, Journal of Crystal Growth, vol.311, pages 342–348 (2009).
[33] K. Mazaev, V. Kalaev, E. Galenin, S. Tkachenko and O. Sidletskiy, Heat transfer and convection in Czochralski growth of large BGO Crystals, Journal of Crystal Growth, vol.311, pages 3933-3937 (2009).
[34] J. F. Nye, Physical Properties of Crystals, Clarendon, Oxford(1957).
[35] S.E. Demina, E. N. Bystrova, M.A. Lukanina, V. M. Mamedov, V. S. Yuferev, E. V. Eskov, M. V. Nikolenko, V. S. Postolov and V. V. Kalaev, Numerical analysis of sapphire crystal growth by the Kyropoulos technique, Optical Materials, vol.30, pages 62–65 (2007).
[36] E. R. Dobrovinskaya, L. A. Lytvynov and V. Pishchik, Sapphire, Springer, New York(2009).
|