博碩士論文 963203067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.133.144.197
姓名 陳幸中(Hsing Chung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高壓預混甲烷燃燒:層焰與紊焰傳播速度量測
(High Pressure Premixed Methane Combustion: Measurements of Laminar and Turbulent Flame Propagation Speeds)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討壓力效應對於中央引燃預混火焰傳播速度(flame propagation speed, SF)之影響。本研究使用低碳燃料甲烷和空氣之預混燃氣,針對當量比(equivalence ratio)?? = 0.8、1.0與1.2,在0.1 ~ 1 MPa等不同壓力條件下,於高壓十字型預混燃燒器中,執行一系列中央引燃之層流與紊流燃燒實驗。高壓十字型預混燃燒器含兩大部分,一為大型高壓保護外爐,另一為置於其內之十字型燃燒器。內外爐皆具有四個耐高壓之石英玻璃視窗,配合高速、高解析度CMOS攝影機搭配上濾光片透過視窗,可用來觀測火核與火焰的成長以及與流場的交相作用。十字型燃燒器內的紊流場由置於其水平圓管兩端之一對反向旋轉特製風扇及空孔板所產生,可在燃燒器中央觀測區產生一約15公分立方具零平均速度之等向性紊流場,其紊流擾動速度(u’’)最高約可達8 m/s,相對應之ReT = u’’LI/? = 24,850,其中LI與?分別為流場積分長度尺度和流體運動黏滯係數。預混火焰熱擴散不穩定效應,可用無因次參數Lewis(Le)或Markstein (Ma)數來說明,其中Le = αT/D,αT和D分別為熱與質量擴散係數;而層流Ma = LM /?F,LM為Markstein長度,?F為火焰厚度(flame thickness)。由貧油實驗結果顯示,在常壓(0.1 MPa)條件下,當Le < 1或Ma數較小、接近於0和為負值時,貧油預混甲烷火焰(? = 0.8)其未受拉伸層流燃燒速度(SL,0)為0.31 m/s,且火焰面會因熱擴散不穩定,使火焰面產生細胞狀結構(cell structure)。SL,0值會隨著壓力增加而下降,隨著壓力提昇至1 MPa時,SL,0值僅為0.09 m/s,下降約71%,且?F值亦下降,使熱擴散不穩定效應更容易發生,令細胞狀結構更加明顯。在常壓層流富油預混甲烷(? = 1.2)條件下,Le > 1相對應之Ma 1.81,SL,0約為0.34 m/s,火焰面上沒有細胞狀結構。同樣地,SL,0值隨壓力上昇而下降,在1 MPa時,SL,0 ≈ 0.13 m/s,且因?F值變小,使火焰面易產生些為皺褶。我們量測所得之SL,0值與壓力之關係,可以用Metghalchi(1980)所提之關係式來表述,即SL,p = SL,0 (Pb/P0)β,其中SL,p為不同壓力下之層流燃燒速度,Pb為初始壓力而P0為參考壓力(0.1 MPa),β為燃氣當量比的函數。在紊流條件下,針對貧油預混甲烷(? = 0.8)火焰,探討壓力效應對紊流燃燒速度(ST)之影響。實驗結果顯示,ST值似乎會隨壓力增加而增加,此結果與層流結果正好相反。且在高壓紊流條件下,熱擴散不穩定效應相較於層流條件時,會更加明顯,如初始壓力為0.5 MPa與風扇轉頻f = 30Hz時,正規化之ST值約為0.1 MPa之3.5倍,在1 MPa時,甚至達7倍之多。所大幅增加之ST值,似乎無法僅由熱擴散不穩定效應受高壓和紊流交互作用來解釋,我們猜測流體動力不穩定也扮演一角色,使得高壓紊焰皺褶增加,進而使其ST值大幅提升。這顯示受到壓力的影響,熱擴散不穩定效應與紊流交互作用,可再增加火焰表面積進而使ST值大幅提升。
摘要(英) This thesis measures the effect of elevated pressure on centrally-ignited premixed flame propagation speeds (SF). We study methane-air mixture at three different equivalence ratios (? = 0.8、1.0、1.2), because methane has the lowest C/H ratio among all hydrocarbon fuels. At each value of ???both laminar and turbulent combustion experiments with initial pressure varying from 0.1 ~ 1 MPa are conducted. All combustion experiments using spark ignition are carried out in the centre of a high-pressure cruciform burner. The high-pressure cruciform burner has two major parts: a huge outer high-pressure absorbing safety chamber and a large inner cruciform burner. Both inner and outer chambers have four optically-accessed quartz windows on their top, bottom, front, and back sides. Thus, visualizations of flame kernel formation and its subsequent flame propagation interacting with turbulence can be recorded by a high-speed, high-resolution camcorder. Using a pair of counter-rotating fans and perforated plates equipped to the two ends of the large horizontal vessel, a near-isotropic turbulent flow field having 150 × 150 × 150 mm3 can be generated in the central region of the inner cruciform burner. In it the maximum value of turbulent fluctuating velocities u’’ can be up to 8 m/s with the corresponding turbulent Reynolds number ReT = LIu’’/ν = 24,850, where LI is the integral length scale and ν is kinematic viscosity of reactants. The dimensionless Lewis number (Le = αT/D) and/or Markstein number (Ma = LM /?F) are used to discuss the effect of diffusion-thermal instability, where αT is the thermal diffusivity, D is the molecular diffusivity, LM is Markstein length, and ?F is flame thickness, respectively. Results show that, at?? = 0.8, where Le > 1 and Ma is either very close to zero or becomes negative under laminar condition, the unstretched laminar burning velocity (SL,0) is about 0.31 m/s when P = 0.1 MPa, of which the cellular structure is observed on the outwardly-propagating flame surface. Such cellularity becomes even more obviously when the pressure increases to 1MPa, where SL,0 ≈ 0.09 m/s with a decrease of 71% compared to that at 0.1 MPa. As P increases, ?F decreases making the flame more vulnerable to the diffusion-thermal instability. At ? = 1.2, where Le > 1 and Ma 1.81, the diffusion-thermal instability is not observed, but the outwardly-propagating flame surface can be slightly wrinkle by the hydrodynamic instability where SL,0 is about 0.34 m/s at P = 0.1 MPa. When increasing the initial pressure to 1 MPa, SL,0 drops to 0.13 m/s. And the flame surface appears more wrinkling due to the decrease of ?F. For laminar case, our SL,0 data can be fitted by an empirical relation, SL,p = SL,0(Pb/P0)β, proposed by Metghalchi et al, where SL,p is the laminar burning velocity under different initial pressures, Pb is the initial pressure, P0 is the reference pressure at 0.1 MPa, and β is a function of ?. The response of turbulent burning velocity (ST) with increasing pressure shows an opposite trend. For example, when ? = 0.8 with f = 30Hz, the normalized value of ST at P = 1 MPa is 7 times larger than that at P = 0.1 MPa case, suggesting that the effect of elevated pressure promotes the interactions between turbulence and flame instabilities resulting in an increase of ST.
關鍵字(中) ★ 壓力效應
★ 熱擴散不穩定
★ 流體動力不穩定
★ 紊流燃燒速度
★ 層流燃燒速度
關鍵字(英) ★ Pressure effect
★ diffusion-thermal instability
★ hydrodynamic instability
★ laminar burning velocity
★ turbulent burning velocity
論文目次 摘 要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
表目錄 XI
符號說明 XII
符號說明 XII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方案 3
1.4 論文架構 5
第二章 文獻回顧 6
2.1 紊流燃燒的理論 6
2.1.1 Huygen’s傳遞理論 6
2.1.2 預混紊流燃燒狀態圖 7
2.2 火焰傳播 8
2.3 拉伸對於預混焰的影響 9
2.3.1 火焰拉伸的定義 9
2.3.2 火焰的型態與拉伸 10
2.3.3 拉伸與火焰傳遞 12
2.4 火焰不穩定性 13
2.4.1 流體不穩定性 13
2.4.2 熱擴散不穩定性 14
2.4.3 浮力效應與燃燒之關係 15
2.5 初始壓力與溫度對火焰傳播的影響 15
2.6 高壓預混紊流燃燒 16
第三章 實驗設備與量測方法 27
3.1 高壓十字型預混紊流燃燒器 27
3.2 高功率脈衝放電系統 28
3.3 高速影像擷取系統 29
3.4 放電能量與火焰傳遞計算 30
3.4.1 燃氣當量比 30
3.4.2 放電能量 30
3.4.3 火焰傳遞速度 31
3.5 實驗流程 32
3.6 誤差分析 33
第四章 結果與討論 38
4.1 火焰傳播形態 38
4.2 火焰傳遞速度的計算 39
4.2.1 膨脹效應 40
4.2.2 絕熱火焰溫度 41
4.2.3 浮力效應 42
4.3 靜態流場之火焰傳遞機制 42
4.3.1 層流之火焰傳遞之定量量測 43
4.3.2 壓力效應對層焰傳遞之影響 43
4.3.3 壓力效應對於層焰厚度之影響 46
4.3.4 壓力效應對於Ma數的影響 48
4.4 紊流流場之火焰傳遞機制 49
第五章 結論與未來工作 76
5.1 結論 76
5.2 未來工作 78
參考文獻 79
參考文獻 [1] Energy Information Administration, Annual Energy Outlook 2007 with Projections to 2030, Rep. No. DOE/EIA-0383 (2007).
[2] The Department of Energy (DOE). http://www.doe.gov/
[3] 林文基,“甲烷與丙烷預混紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[4] 陳彥志,“高效率天然氣加氫燃燒技術與汙染物定量量測”,國立中央大學機械工程研究所,碩士論文,2002年。
[5] 石偉達,“預混紊流燃燒:火花引燃機制與加氫效應之定量量測”,國立中央大學能源工程研究所,碩士論文,2007年。
[6] 李尚軍,“火花引燃機制與散佈狀燃燒形態之實驗研究”,國立中央大學機械工程研究所,碩士論文,2008年。
[7] Hoffert, M. I., Caldeira, K., Jain, A. K., Haites, E. F., Harveyk, L. D. D., Potter, S. D., Schlesinger, M. E., Schneider, S. H., WattsI, R. G., Wigley, T. M. L. and Wuebbles, D. J., “Energy Implications of Future Stabilization of Atmospheric CO2 Content,” Nature 395, 881-884 (1998).
[8] Huang, C. C., Shy, S. S., Liu, C. C. and Yan, Y. Y., “A Transition on Minimum Ignition Energy for Lean Turbulent Methane Combustion in Flamelet and Distributed Regimes,” Proc. Combust. Inst. 31, 1401-1409 (2006).
[9] Shy, S. S., Lin, W. J. and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion,” Proc. R. Soc. Lond. A 456, 1997-2019 (2000).
[10] Yang, S. I. and Shy, S. S., “Global Quenching of Premixed CH4/Air Flame: Effects of Turbulent Straining Equivalence Ratio, and Radiative Heat Loss,” Proc. Combust. Inst. 29, 1841-1847 (2002).
[11] Shy, S. S., Lee, E. I., Cheng, N. W. and Yang, S. I., “Direct and Indirect Measurements of Flame Surface Density, Orientation, and Curvature for Premixed Turbulent Combustion Modeling in a Cruciform Burner,” Proc. Combust. Inst. 28, 383-390 (2000).
[12] Damköhler, G., “The Effect of Turbulent on the Flame Velocity in Gas Mixtures,” Z. Elektrchem. 46, 601-652 (1940). (English translation NASA Tech. Mem. 1112, 1947).
[13] Borghi, R., “On the Structure and Morphology of Turbulent Premixed Flames,” Recent Advances in the Aerospace Sciences, Ed. C. Casci, 117-138, New York, Plenum (1985).
[14] Bray, K. N. C., “Turbulent Flows with Premixed Reactants,” Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., 115-183, New York, Springer-Verlag (1980).
[15] Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion,” Proc. Combust. Inst. 21, 1231-1250 (1986).
[16] Williams, F. A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City (1985).
[17] Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge (2000).
[18] Kitagawa, T., Ogawa, T. and Nagano, Y., “The Effects of Pressure on Unstretched Laminar Burning Velocity, Markstein Length and Cellularity of Spherically Propagating Laminar Flames,” COMODIA, August 2-5, Japan (2004).
[19] Bradley, D., Haq, M. Z., Hicks, R. A., Kitagawa, T., Lawes, M., Sheppard, C. G. W. and Woolley, R., “Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition,” Combust. Flame 133, 415-430 (2003).
[20] Bradley, D., Gaskell, P. H. and Gu, X. J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flame: A Computational Study,” Combust. Flame 104, 176-198 (1996).
[21] Law, C. K., “Dynamics of Stretched Flames.” Proc. Combust. Inst., Vol. 22, pp. 1381-1402 (1988).
[22] Poinsot, T., Veynante, D., and Candel, S., “Diagrams of Premixed Turbulent Combustion Based on Direct Simulation,” Proc. Combust. Inst., Vol. 23, pp. 613-619 (1990).
[23] Searby, G., and Quinard, “Direct and Indirect Measurements of Markstein Numbers of Premixed Flames,” Combust. Flame, Vol. 82, pp.298-311 (1990).
[24] Law, C. K., Zhu, D. L., and Yu, G., “Propagation and Extinction of Stretched Premixed Flames,” Proc. Combust. Inst., Vol. 21, pp. 1419-1426 (1986).
[25] Clanet, C., Searby, G., “First Experimental Study of the Darrieus-Landau Instability, ” Phys. Lett., Vol. 80, pp. 3867-3870 (1997).
[26] Metghalchi, M., Keck, J. C., “Laminar Burning Velocity of Propane-Air at High Temperature and Pressure,” Combust. Flame, Vol. 38, pp.143-156 (1980).
[27] Gu, X. J., Haq, M. Z., Lawes, M., Woolley, R., “Laminar Burning Velocity and Markstein Length of Methane-Air Mixtures, ” Combust. Flame, Vol. 45, pp.41-58 (2000).
[28] Kobayashi, Hideaki., Nakashima, Teppei., Tamura, Takashi., Maruta, Kaoru., Nioka, Takashi., “Turbulence Measurements and Observations of Turbulent Premixed Flames at Elevated Pressures up tp 3.0 Mpa,” Combust. Flame, Vol. 108, pp.104-117 (1997).
[29] Pocheau, A., “Front Propagation in a turbulent medium,” Europhys. Lett. 20, 401-416 (1992)
[30] Law, C. K., Combustion Physics., Cambridge, New York City (2006).
[31] Tseng, L. K., Ismail, M. A., and Faeth, G. M., ”Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames,” Combust. Flame, Vol. 95, pp. 410-426 (1993).
[32] Jomaas, G., Law, C. K., Bechtold, J. K., ”On Tansition to Cellularity in Expanding Spherical Flames,”J. Fluid Mech, Vol. 583, pp. 1-26 (2007).
[33] Hassan, M. I., Aung, K. T., and Faeth, G. M., ”Measured and Predicted of Laminar Premixed Methane/Air Flames at Various Pressures,” Combust. Flame, Vol. 115, pp. 539-550 (1998).
[34] Andrews, G. E., and Bradley, D., ”The Burning Velocity of Methane-Air Mixtures,” Combust. Flame, Vol. 19, pp. 275-288 (1972).
[35] Aung, K. T., and Tseng, L. K., Ismail, M. A., and Faeth, G. M., ”Laminar Burning Velocities and Markstein Numbers of Hydrocarbon / Air Flames,” Combust. Flame, Vol. 102, pp. 526-530 (1995).
[36] Peters, N., ”The Turbulent Burning Velocity for Large-scale and Small-scale Turbulence,”J. Fluid Mech, Vol. 384, pp. 107-132 (1999).
[37] Shy, S. S., Shin, W. T., Liu, C. C., ”More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes,” Combust.Sci. and Tech., Vol. 180, pp. 1735-1747 (2008).
[38] Shy, S. S., and Chen, Y. C., Liu, C. C., Huang, C. M., ”Effect of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion,” Combust. Flame, Vol. 153, pp. 510-524 (2005).
[39] Shy, S. S., I, W. K., Lin, M. L., ”A new Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study,” Exp. Thermal and Fluid Sci., Vol. 20, pp. 105-114 (2000).
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2009-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明