博碩士論文 86346007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.226.52.103
姓名 趙煥平(Huan-Ping Chao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 有機物自水中揮發之研究
(Organic Solute Emissions from Various Dilute Solutions)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要內容包括建立新的揮發模式﹐解釋環境因子對揮發之影響及分析有機物在不同環境條件下的揮發特性。傳統以二層膜理論估算有機物之揮發量存在一些較不適用或無法精確估算的情形,包括擾流狀態、較適於估算高揮發性有機物、無法由物理化學性質解釋影響揮發之因子及對純物質揮發進行估算等四部份。為克服上述問題,本研究新提出之模式改以氣體動力學中估算有機物在真空下,單位時間內撞擊1 cm2平板的分子質量所用之方程式為基礎,並將氣相參數β與擾流參數α加入方程式中;其中β為風速與大氣壓力的函數,在相同的大氣條件下β接近常數,α為有機物在液體交界與溶液中濃度比值,其為擾流強度、亨利常數與化合物分子量的函數,此模式將原本以有機物在溶液中濃度為揮發量估算之方法轉變成以有機物在交界面濃度減少來決定揮發損失。此新提出之模式稱之表面損失揮發模式(surface depletion rate-limiting, SDRL),另由實驗的結果證明了所提出揮發模式之有效性。
對揮發之影響因子部份,證實揮發是系統能量與溶質與溶液間親和力之競爭。以此為依據,增加溫度與擾流強度會使系統能量增加從而增加揮發速率﹔加入界面活性劑或大分子有機物後,則會增加溶質與溶液間的親和力,使有機物的揮發受到抑制。對於有機物的揮發特性部份﹐以不同物化性質有機物置於不同的環境條件下﹐觀察彼此間揮發速率的差異﹐並以傳統的質量傳送理論、所提出之表面損失模式與活化能反應速率方程式解釋選擇化合物所表現出的揮發特性﹐同時也詳細探討了三種模式的適用性。
摘要(英) This study is to develop a new volatilization model and to elucidate volatilization characteristics of different organic compounds under various environmental conditions. The gas kinetic equation for the pure substance emission under the vacuum condition was extended to be the volatilization model by adding a gas parameter β and a liquid-turbulence coefficient α. The β value of different organic compounds at the given environmental condition was found to be a constant. The α is a function of the liquid turbulence, the wind speed, the Henry’s law constant and the molecular weight of the interested compounds.
The volatilization of an organic solute from a solution is the result of two competing factors. The first consists of accelerative effects that include the thermal energy and the mixing intensity. The second consists of inhibitive effects, namely, the affinity that exists between the solute and the solution. Consequently, the solute emission rates depend on the environmental conditions (such as the liquid temperatures and the mixing intensities), wind speeds, and the solute and solution properties. The effects of the above-mentioned environmental conditions on volatilization will be discussed with the physico-chemical properties of the selected organic compounds in the section. On the other hand, the ratio of the volatilization rate constant for the organic compound to that for the reference substance depicts volatilization characteristics under different environmental conditions. It was found that Henry’s law constant for stirred liquid, wind speed and aqueous solubilities of compounds for the surfactant in the solution can determine the volatilization diversity. The results revealed that the organic compounds with the similar physico-chemical properties exhibited the nearly identical volatilization characteristic in the various environments. To select the reference compound on the basis of their physico-chemical properties is a more effective method for estimating the volatilization rates of solutes under various environmental conditions.
關鍵字(中) ★ 揮發
★ 擾流
★ 風速
★ 界面活性劑
★ 表面損失揮發模式
★ 氣體動力學
關鍵字(英) ★ kinetic gas equation
★ surfactant
★ liquid stirring
★ wind speed
★ volatilization characteristic
論文目次 目錄 ……………………………………………………………… Ⅰ
圖目錄 ……………………………………………………………… VI
表目錄 ……………………………………………………………… VIII
第一章 前言.……………………………………………………... 1
1-1 研究緣起.…………………………………………………….… 1
1-2 研究目的及內容.………………………………………………. 3
第二章 文獻回顧.………………………………………………... 4
2-1 基本理論介紹…………………………………………………. 4
2-1-1 勞特定律…………………………………………………. 4
2-1-2 亨利定律…………………………………………………. 4
2-1-3 二層膜理論………………………………………………. 5
2-1-4 氣體動力學觀念…………………………………………. 7
2-1-5 增溶作用…………………………………………………. 8
2-1-6 Arrhenius活化能方程式...………………………………. 8
2-2 界面活性劑……………………………………………………. 9
2-2-1 界面活性劑之定義……………………………………….. 9
2-2-2 界面活性劑之分類………………………………………. 10
2-2-3 臨界微胞濃度(CMC)…………………………………….. 10
2-2-4 界面活性劑分子結構與CMC值之間的關係…………... 11
2-2-5 界面活性劑對疏水性有機污染物的增溶現象…………. 11
2-3 VOCs之定義與特性……………………………………….. 13
2-4 蒸汽壓與亨利常數之估算……………………………………. 15
2-4-1 蒸汽壓算…………………………………………………. 15
2-4-2 亨利常數估算……………………………………………. 16
2-5 VOCs逸散量的估算……………………………………….. 18
2-5-1 高濃度VOC之揮發量…………………………………… 18
2-5-2 VOC自稀薄溶液中的揮發量…………………………… 20
2-6 VOCs在廢水廠中損失的機制……………..………………. 25
2-6-1 揮發至大氣……………………………………………….. 26
2-6-2 吸附損失…………………………………………………. 29
2-6-3 生物分解損失……………………………………………. 30
2-7 各產業常見之VOC及溢散後之處理方式………………….. 31
2-7-1 各產業常見VOC………………………………………… 31
2-7-2 溢散VOC之處理方式…………………………………… 34
2-8 影響揮發的因子………………………………………………. 36
2-8-1 溫度影響…………………………………………………. 36
2-8-2 大分子有機物與界面活性劑……………………………. 37
2-8-3 有機物溶解度……………………………………………. 38
2-8-4 反應槽的尺寸……………………………………………. 38
2-8-5 氣、液相擾流……………………………………………. 39
2-8-6 化合物蒸汽壓……………………………………………. 41
第三章 研究方法與實驗設備…………………………………... 43
3-1 研究流程………………………………………………………. 43
3-1-1 選定不同亨利常數之化合物……………………………. 45
3-1-2 收集選擇化合物的物理化學性質……………………….. 45
3-1-3 選擇環境條件……………………………………………. 46
3-1-4 測定不同化合物在純物質時的揮發量………………….. 46
3-1-5 測有機物的揮發速率常數………………………………. 47
3-1-6 計算α值…………………………………………………. 48
3-1-7 求α值與其他相關參數間之關係式……………………. 48
3-1-8 探討揮發之影響因子……………………………………. 49
3-1-9 選擇參考化合物…………………………………………. 49
3-1-10 比較選擇化合物與參考化合物揮發差異……………… 50
3-1-11 推測在廢水處理時有機物之揮發量……………………. 50
3-2 實驗設備………………………………………………………. 51
3-3 實驗材料…………………………………..………………….. 53
3-3-1 有機物之物化特性………………………………………. 53
3-3-2 選擇之界面活性劑……………………………………….. 56
3-3-3 大分子有機物與高分子聚合物………………………….. 56
3-4 實驗控制條件………………………………………………….. 56
3-4-1 溫度控制………………………………………….………. 56
3-4-2 擾流強度…………………………………………………. 57
3-4-3 氣相擾動控制……………………………………………. 57
3-4-4 溶液配置濃度……………………………………………. 57
3-4-5 反應槽的尺寸……………………………………………. 58
3-4-6 反應時間…………………………………………………. 58
3-4-7 取樣時間…………………………………………………. 59
3-4-8 萃取的溶劑……………………………………………….. 59
3-4-9 分析不同化合物之檢知器………………………………. 60
3-5 實驗步驟………………………………………………………. 60
3-5-1 純物質揮發測定步驟……………………………………. 60
3-5-2 液相擾流下KOL測定步驟………………………….. 61
3-5-3 加入界面活性劑時KOL測定步驟………………..… 62
3-5-4 氣相擾流下KOL測定步驟……………………………… 62
3-5-5 模擬廢水處理廠之擾流…………………………………. 63
第四章 表面損失揮發模式………………………………….…… 64
4-1 二層膜理論在估算揮發量之應用與問題…………………….. 64
4-1-1 二層膜理論的問題………………………………………. 64
4-1-2 對二層膜理論的修正方式……………………………….. 66
4-1-3 表面損失揮發模式與二層膜模式的差異性…………..… 67
4-2 純物質之揮發………………….…………………..………….. 71
4-2-1 靜止狀態下的β值………………..…………………….. 71
4-2-2 液相擾動狀態下的β值………………………………….. 73
4-2-3 不同風速下之β值………………………..……………… 74
4-2-4 同時氣、液相擾動下之β值…………………………….. 81
4-3 揮發速率常數k值在擾流下的變化特性……..…………….. 83
4-3-1 揮發速率常數在不同條件下之差異…………………… 83
4-3-2 攪拌系統下的揮發速率常數…………………………….. 88
4-3-3 攪拌對於不同揮發性化合物k值的變化……….…..….. 90
4-3-4 攪拌與靜止時質傳係數的比值(KOL/KOLo)變化………... 98
4-4 液相擾流因子α之探討……………………………………….. 100
4-4-1 α值與亨利常數之關係……………………….…………. 100
4-4-2 α值隨擾流強度之變化………………….……………….. 102
4-4-3 擾流強度對α/α0值變化……………..………………… 109
4-4-4 α值與分子量之關係…………………………………….. 110
4-4-5 α值與G、H、M之關係……………………………….. 113
第五章 環境因子對揮發之影響…………………………..…….. 117
5-1 有機物揮發特性論述…….…………………..……………….. 117
5-1-1 亨利常數在揮發上之應用………………………………. 117
5-1-2 三種揮發模式對揮發特性之解釋………………………. 120
5-2 溶液性質對VOCs揮發之影響………………….…………….. 124
5-2-1 溶液溫度對VOCs揮發速率之影響…………………….. 124
5-2-2 界活性劑對VOCs揮發速率之影響…………………….. 127
5-2-3 形成微胞對揮發速率抑制情形……………………….. 130
5-2-4 VOCs在不同性質溶液之揮發特性……………………... 133
5-3 風速對於揮發速率之影響…………………………………….. 144
5-3-1 不同風速下有機物傳送係數……………..……..……. 144
5-3-2 有機物在風速與液相攪拌之KOL值變化..……….…….. 152
5-4 實際廢水處理模擬……………………………………………. 160
5-4-1 不同濃度混凝劑對有機物揮發之影響……….……..….. 160
5-4-2 Polymer濃度對揮發之影響………………………….….. 165
5-4-3 化學混凝程序中有機物的揮發特性……..…………….. 169
第六章結論與建議……………………………………………….. 171
參考文獻…………………………………………………………….. 173
附錄
附錄A亨利常數之單位換算…………………………………… 附1
附錄B純物質揮發試驗選擇化合物之蒸汽壓………………… 附4
附錄C參數計算…..…………………………………….……… 附5
參考文獻 Alaee, M.; Whittal, R. M. and Strachan, W. M. J. "The Effect of Water Temperature and Composition on Henry’s Law Constant for Various PAH’s", Chemosphere, 32(6) ,1153-1164,1996.
Altschuh, J.; Briiggemann, R.; Santl, H.; Eichinger, G. and Piringer, O.G. "Henry’s Law Constsnts for Diverse of Organic Chemicals: Experimental Determination and Comparison of Estimation Methods", Chemosphere, 39(11),1871- 1887,1999.
Anderson, M.A. "Influence of Surfactants on Vapor-Liquid Partitioning", Environmental Science & Technology, 26(11), 2186-2190,1992.
Bell, J P.; Menryk, H.; Monteith, H.; Osinga, I. and Steel, P. "Stripping of Volatile Organic Compounds at Full-Scale Municipal Wastewater Treatment Plant", Water Environment Research, 65(6), 708- 716,1993.
Bell, J.P.; Corsi, R. L. and Melcer H." Toxic Air Emissions fromWastewater Treatment Facilities", Water Environment Federation Publication, Arlington, VA, 1994.
Betterton, E.A. and Hoffmann, M. R. "Henry's Law Constants of Some Enviromentally Important Alaehydes", Environmental Science & Technology 25(5) ,903- 910,1991.
Bhattacharya, S.K.; Madura, R.L.; Dobbs, R.A.; Angara, R.V.R. and Tabak, H. "Fate of Selected RCRA Compounds in a Pilot-Scale Activated Sludge System" Water Environment Research, 68(3), 260- 269, 1996.
Bielefeldt, A. R. and Stensel, H. D. "Treating VOC-Contaminated Gases in Activated Sludge: Mechanistic Model to Evaluate Design and Performance", Environmental Science & Technology, 33(18), 18, 3234-3240,1999.
Brosseau, L.M. and Rienke, P.H. "Development of A Model To Predict Air Contaminant Concentrations Following Indoor Spill of Volatile Liquid", Annnls of Occupational Hygiene, 41(4), 415- 435,1997.
Bruce I. D.; Christopher J. H; Claire P. M.; Desmond F. L. and Gerald Jr. E. S., "Selection Among Aqueous and Off-Gas Treatment Technologies for Synthetic Organic Chemicals", Journal of Environmental Engineering-ASCE, 115 (3), 560-573,1995.
Brunner, E.; Helmut, E. h.; Wolff, S.E. and Piringer, O.G. "Henry's Law Constants for Polychlorinated Biphenyls: Experimental Determination and Structure- Propetry Relationships", Environmental Science & Technology, 24(11), 1751 -1754,1990.
Burkhard, L.P.; Armstrong, D. E. and Andren, A.W. "Henry's Law Constants for the Polychlorinated Biphenyls", Environmental Science & Technology, 19 (7), 590-596, 1985.
Callaway, J.Y.; Gabbita, K. V. and Vilker, V. L. "Reduction of Low Molecular Weight Halocarbons in the Vapor Phase above Concentrated Humic Acid Solution", Environmental Science & Technology, 18 (11), 890- 893,1984.
Chao, H.-P. and Lee, J.-F. "Volatilization Reduction Effects of BTEX by Surfactant and High-Molecular-Weight Organic Compounds in Aqueous Solutions ", IWA Asia-Pacific Regional Conference, Fukuoka, Japan,2001.
Chao, H-.P.; Lee, J.-F. and Lee, C.-K. "Effects of Dissolved Chemicals on the Volatilization Rates of BTEX", Journal of Environmental Science and Health Part A, A35(6), 869-881, 2000.
Chiou, C. T. "On the Validity of Codistillation Model for the Evaporation of Pesticides and Other Solutes from Water Solution", Environmental Science & Technology, 14, 1253-1256,1980.
Chiou, C.T. "Evaporation of Components from a Miscible Solution ", Environment International, 4, 15-19,1980.
Chiou, C.T.; Freed. V. H.; Peters, L. J. and Kohnert, R. L. "Evaporation of Solutes from Water", Environment International, 3, 231-235, 1980.
Chiou, C.T.; Kohnert, R.L.; Freed, V. H. and Tonkyn, R.G. "Prediction of Evaporative Loss Rate of Solutes in Stagnant and Turbulent Waters in Relation to Rates of Reference Materials ", Environment International, 9, 13-17,1983.
Chiou, C.T.; Malcoim, R. L.; Brinton, T. I. and Kile, D.E." Water Solubility Enhancement of Some Organic Pollutnats and Pesticides by Dissolved Humic and Fulvic Acids", Environmental Science & Technology, 20(5), 502-508, 1986.
Cohen, N.; Cocchio, W. and Mackay, D. "Laboratory Study of Liquid-Phase Controlled Volatilization Rates in Presence of Wind Waves", Environmental Science & Technology, 12 (5), 553-558,1978.
Corsi, R.L.; Birkett, S.; Merlcer, H. and Bell, J. "Control of VOC Emissions from Sewers: A Multi-Parameter Assessment", Water Science and Technology, 31(7), 147- 157,1995.
Corsi, R.L.; Chang, D. P. Y., and Schroeder, E. D. “A Modeling Approach for VOC Emissions from Sewers”, Water Environment Research, 64(5), 734- 741, 1992.
Cunningham, D. "Estimation of VOC Emissions", Journal of Cleaner Production, 3(4), 225-228, 1995.
Dawson, D.S. and Gokare, M.A. "Gaseous Emissions from Wastewater Facilities", Water Environment Research, 66(4), 375- 378,1994.
De Nevers N."Air Pollution Control Engineering" Mc Graw-Hill, Singapore, 1995.
Dewulf, J.; Langenhove, Y, and Heireman, B. "The Air/Water Exchange of Volatile Organic Compounds from Water in the Transient and Turbulent Regime", Water Research, 32(7), 2106- 2122,1998.
Dvorak, B.I.; Herbeck, C.J.; Meurer, C.P.; Lawler, D.F. and Speitel, Jr. G.E. "Selection among Aqueous and Off-Gas Treatment Technologies for Synthetic Organic Chemicals", Journal of Environmental Engineering-ASCE, 115(3), 560- 573.
EPA Report, "Ambient Measurement Methods and Properties of 189 Clean Air Act Hazardous Air Pollutants, EPA 600/R-94/098, March 1994, USEPA, Research Triangle Park. NC.
Fendinger, N.J. and Glotfelty, D.E."A Laboratory Method for the Experimental Determination of Air-Water Henry's Law Constants for Several Pesticides", Environmental Science & Technology, 22(11), 1289- 1293,1988.
Fischer, R.G. and Ballschmiter, K. "Determination of Vapor Pressure, Water Solubility, Gas-Water Partition Coefficient PGW, Henry’s Law Constant, and Octanol-Water Partition Coefficient Pow of 26 Alkyl Dinitrates", Chemosphere, 36(14), 2891- 2901,1998.
Gholson, A. R.; Aibittion, J. R. and Jayanty, R. K. M. "Evaluation of an Enclosure Method for Measuring Emission of Volatile Organic Compound from Quiescent Liquid Surfaces", Environmental Science & Technology, 25 (3), 519-524,1991.
Gmehling, J "Group Contribution Methods for the Estimation of Activity-Coefficients ", Fluid Phase Equilibria, 30(10), 119-134,1986
Harrison, M. A. J.; Cape, J. N. and Heal, M. R. " Experimentally determined Henry’s Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281-302K", Atmospheric Environment, 36,1843-1851,2002.
Hass, B. S. and Herrmann, R. "Transport of Chlorinated Hydrocarbons Between Sewage and Sewer Atmosphere", Water Science and Technology, 34 (3-4), 557- 564,1996.
Hass, B.S. and Herrmann, R. "Tracing Volatile Organic Compounds in Sewers", Water Science and Technology, 37(1), 295- 301,1998.
Hawker D.W. "Vapor Pressures and Henry's Law Constants of Polychlorinated Biphenyls", Environmental Science & Technology, 23(10), 903-910,1991.
Hsieh, C.-C.; Ro, K. S. and Stenstorm, M. K. "Estimating Emissions of 20 VOCs I: Surface Aeration, II:Diffused Aeration" Environmental Engineering , NOV./ DEC.,119(6), 1077-1118, 1993.
Hsieh, C.-C.; Babcock, Jr. R.W. and Stenstorm, M. K. "Estimating Semivolatile Organic Compound Emission rate and Oxygen Transfer Coefficients in Diffused Aeration", Water Environment Research, 66 (3), 206- 210,1994.
Ince, N. and Inel, Y. "A Semi-Empircal Approach To Relate the Volatilization Rates of Organic Chemicals to Their Physical Properties", Water Research, 25(8), 903- 909 ,1991.
Jayjock, M. A. and Hawkins, N. C. "A Proposal for Improving the Role of Exposure Modeling in Risk Assessment ", American Industrial Hygiene Association Journal, 54(12), 733-741, 1993.
Kyosai, S and Rittmann, B. E. "Effect of Water-Surface Desorption on Volatile Compound Removal Under Bubble Aeration", Research of Journal the Water Pollution Control Federation, 63(6), 887-894,1991
Kuo, H.-W.; Chan, C.-C.; Lai, J.-S. and Wang, J.-D. "Volatile Organic Compounds in Water near Petrochemical Factories in Taiwan", Chemosphere, 33(5), 913- 920, 1996.
LaBranche, D. F. and Collins, M.R. "Stripping Volatile Organic Compound and Petroleum Hydrocarbons form water", Water Environment Research, 68, (3),348- 358,1996.
Laidler, K .J. and Meiser, J.H." Physical Chemical", Benjamin/ Cummings, Tapei, 1987.
Lee, C.-K.; Chao, H.-P. and Lee, J.-F. "Effects of Organic Solutes Properties on the Volatilization Processes from Water Solutions" Water Research, 2003. (In press)
Liao, Y.-C. and Lee, D.-J. "Estimation of VOC Emission Rate From a Sequencing Batch Reactor", Water Science and Technology, 35 (6), 45- 52, 1997.
Liss P. S. and Slater P.G. "Flux of Gases across the Air-Sea Interface", Nature, 247, 181-184, 1974.
Makcay, D. and Leinonen, P. J. "Rate of Evaporation of Low-Solubility Contaminants from Water Bodies to Atmosphere", Environmental Science & Technology, 9(13), 1178-1180, 1975.
Mackay, D. and Paterson, S. " Fugacity Models of Indoor Exposure to Volatile Chemicals", Chemosphere, 12(2), 143-154, 1983
Mackay, D.and Shiu,W. N. "A Critical Review Henry's Law Constants for Chemicals of Environmental Interest", Journal of Physical and Chemical Reference Data, 10(4) ,1175 -1199, 1981.
Mackay, D.; Shiu, W. N. and Sutherland, R.P. "Determination of Air-Water Henry's Law Constant for Hydrophobic Pollutant", Environmental Science & Technology, 13(3), 333- 337, 1979.
Mackay, D. and Yuen, A.T. K. "Volatilization Rates of Organic Contaminants from Rivrs" Proceedings of the 14th Canadian Symposium, 1979:Water Pollution Research Canada.
Mackay, D. and Yeun, A. T. K. "Mass Transfer Coefficient for Volatilization of Organic Solutes from Water" Environmental Science & Technology, 17(4), 211-216, 1983.
Mayer, Cheng,G. J., Pau, I. S. P., and Mohamed, F. "Emissions of Air Toxics from Wastewater Treatment plants", Water Environment Research, 66(2), 140-144, 1994.
Matter-Müller C.; Gujer, W. and Giger, W. "Transfer of Volatile Substances from Water to the Amosphere" Water Research, 15, 1271-1279, 1981.
Melcer, H. "Monitoring and Modeling VOCs in Wastewater Facilities" Environmental Science & Technology, 28(7), 328-335,1994.
Melcer, H. and Bedford, W.K. " Verification of the Fate a Volatile Organic Compound in Activated Sludge", Water Environment Research, 66 (7), 887- 893,1994.
Meylan, W. M. and Howard, P.H. ”Bond Contribution Method for Estimating Henry’s Law Constants” Environmental Toxicology and Chemistry, 10(10), 1283-1293,1991.
Michael, L.C.; Pelllzzarl, E. D. and Norwood, D.L. "Application of the Master Analytical Scheme Determination of Volatile Organic in Wastewater Influents and Effluents", Environmental Science & Technology, 25 (1), 150-155, 1991.
Michael, L.C. and Pelllzzarl, E. D. "Development and Evaluation of a Procedure for Determining Volatile Organic in Water" Environmental Science & Technology, 22 (5), 565- 570,1988.
Mullins, M.; Rogers, T. and Loll, A. "Estimation Henry’s Constants for Aqueous Systems at elevated temperatures", Fluid Phase Equlibria, 151,150- 153,1998.
Munz, C. and Roberts, P. "Gas- and Liquid-Phase Mass Transfer Resistances Of Organic Compounds During Mechanical Surface Aeration", Water Research, 23(5), 589- 601,1989.
Murphy, T. J.; Mullin, M. D. and Meyer, J. A. "Equllibration of Polychlorinated Biphenyls and Toxaphene with Air and Water", Environmental Science & Technology, 21(2), 155- 162,1987.
Namkung, E. and Rittmann, B. E. "Estimating Volatile Organic Emissions from Publicly Owned Treatment Works", Research of Journal the Water Pollution Control Federation, 59(7), 670-678, 1987.
Namkung, E.; Rittmann, B. E.; Nirmalakhandan, N. N. and Speece, R.E."QSAR Model for Predicting Henry's Constant " Environmental Science & Technology, 22 (11), 1349 -1357, 1990.
Nicholson, B.C.; Maguire, B.P. and Bursill, D.B. "Henry’s Law Constants for the Trihalomethanes: Effects of Water Composition and Temperature", Environmental Science & Technology, 18(7), 518- 521,1984.
Nielsen, F.; Olsen, E. and Fredenslund, A. "Prediction of Isothermal Evaporation Rates of Pure Volatile Organic Compounds in Occupational Environments-A Theoretical Approach Based on Laminar Boundary Layer Theory", Annals of Occupational Hygiene, 39 (4), 497-511, 1995.
Nirmalakhandan, N.; Brennan, R. A . and Speece, R.E. "Predicting Henry’s Law Constant and the Effect of Temperature on Henry’s Law Constant" Water Research, 31(6), 1471-1481,1997
Nirmalakhandan, N. N. and Speece, R. E " QSAR Model for Predicting Henry’s Constant", Environmental Science & Technology, 22(11), 1349-1357,1988.
Olsen, E.; Olsen, I.; Wallstrom, E. and Rasmussen, D"On the Substitution of Chemicals - Use of the Subfac-Index for Volatile Substances", Annals of Occupational Hygiene, 36(6), 637-652, 1992.
Parker, W. J.; Thompson, D. J.; Bell, J.P. and Melcer, H. "Fate of Volatile Organic Compounds in Municipal Activated Sludge Plants", Water Environment Research, 65(1), 58-65, 1993.
Parker, W.; Monteith, H.and Melcer, H. "Preliminary Assessment of the Removal of Volatile Organic Compounds in a Biological Selector Process", Water Environment Research, 67(5), 798- 801,1995.
Peng, J. ; Bewtra, J.K. and Biswas, N."Effect of Tutbulence on Volatilization of Selected Organic Compounds from Water" Water Environment Research, 67 (1),101-107, 1995.
Peng, J.; Bewtra, J.K.and Biswas, N. "Volatilization of Selected Organic Compounds from Quiescent Water", Journal of Environmental Engineering-ASCE, 120(3), 662- 669,1994.
Peng, J. and Wan, A. "Effect of Ionic Strength On Henry’s Constants Of Volatile Organic Compounds", Chemosphere, 36 (13), 2731- 2740,1998.
Pincene, A. B. " Transfer of Oxygen and Emissions of Volatile Organic Compounds at Clarifier Weir", Research of Journal the Water Pollution Control Federation, 63(2), 114-119, 1987.
Rathbun, R. E. "Volatilization of Organic Compounds from Steam", Journal of Environmental Engineering-ASCE, 108(5), 973-989,1982.
Rathbun, R. E. "Prediction of Stream Volatilization Coefficients”, Journal of Environmental Engineering-ASCE, 116(3), 615-631,1990.
Rathbun, R. E. and Tai D. Y. “ Volatilization of Ketones” Chemosphere, 13(9), 1009-1023, 1984.
Rathbun, R. E. and Tai, D. Y. "Gas-film Coefficient for Volatilization of Ethylene Dibromide from Water", Environmental Science & Technology, 20(9), 949-952,1986.
Rathbun, R. E. and Tai, D. Y. "Volatilization of Ethylene Dibromide from Water", Environmental Science & Technology, 21(3), 248-252,1987.
Reid, R. C., Prausnitz, J. M. and Sherwood, T. K. "The Properties of Gases and Liquids", McGraw-Hill, New York,1977.
Roberts, P. V.; Munz, C. and Dändliker, P. "Modeling Volatile Organic Solute Removal by Surface and Bubble Aeration", Research of Journal the Water Pollution Control Federation, 56 (2),157-163, 1984.
Roberts, P. V., and Dändliker, P. "Mass Transfer of Volatile Organic Contaminants from Aqueous solution to Atmosphere during Surface Aeration", Environmental Science & Technology, 17 (8), 484-489, 1983.
Schwarzenbach, R. P.; Eva, M.K.; Giger, W. and Wakenam, S. G. "Distribution, Residence Time, and Fluxes of Tetrachloroethylene and 1,4-Dichlorobenzene in Lake Zurich, Switzerland", Environmental Science & Technology, 13 (11), 1367-1373, 1979.
Smith, J.H.; Bomberger, D.C.and Haynes, D.L."Predication of the Volatilization Rate of Chemicals in Water ", AIChE Journal, 75, 1367- 1373,1979.
Smith, J.H.; Bomberger, D.C. and Haynes, D.L." Predication of the Volatilization Rate of High-Volatility Chemicals from Natural Water Bodies", Environmental Science & Technology, 14(11), 1332-1336, 1980.
Smith, J.H.; Bomberger, D.C. and Haynes, D. L. "Predication of the Volatilization Rate of Intermediate and Low Volatility Chemicals from Natural Water Bodies", Chemosphere, 10 (3), 281-289,1981.
Southworth, G.R. "The Role of Volatilization in Removing Polycyclic Aromatic Hydrocarbon from Aquatic Environments", Bulletin of Environmental Contamination and Toxicology, 21, 507-514, 1979.
Standley, L. J. and Simoneit, B.R.T. "Characterization of Extractable Plant Wax, Resin, and Thermally Matures Components in Smoke Particles from Prescribed Burns", Environmental Science & Technology, 21(2), 163- 169,1987.
Stenstrom, M. K. and Hsieh, C. C.” Considering VOC Emissions”, Water- Engineering & Management , 138(4), 27-27,1991.
Stiver, W. and Mackay, D. “ Evaporation Rate of Spills of Hydrocarbons and Petroleum Mixtures”, Environmental Science & Technology, 18(11), 834-840,1984.
Suschka, J.; Morwiec, B. and Kuszmider, G. "Volatile Organic Compounds at Some Sewage Treatment Plants in Poland", Water Science and Technology,, 33(12), 273- 276,1996.
Treybal, R.E.,"Mass-Transfer Operation", Southeast, Tapei, 1988.
Vane, L. M. and Giroux, E. L. "Henry’s Law Constants and Micellar Partitioning of Volatile Organic Compound in Surfactant Solutions", Journal of Chemical and Engineering Data, 45, 38- 47,2000.
Yaws, C. L.; Hopper, J. R.; Sheth, S. D; Han, M. and Pike, R. W. "Solubility and Henry’s Law Constant for Alcohol in Water", Waste Management, 17 (8), 541- 547,1997.
Yurteri, C; Callow, J. J.; Gurol, M. D. and Ryan, D. F. ”The Effect of Chemical- Composition of Water on Henry’s Law Constant”, Research of Journal the Water Pollution Control Federation, 59(11), 950-956, 1987.
Zhou, X. and Mopper, K."Apparent Partition Coefficient of 15 Carbonyl Compounds between Air and Freshwater; Implication for Air-Sea Exchange" Environmental Science & Technology, 24(12), 864-1869, 1990.
Zytner, R.G.; Madani-Isfahani, M R and Corsi, L. "Oxygen Uptake and VOC Emissions at Enclosed sewer Drop Structure", Water Environment Research, 69 (3), 286-294,1997.
工業污染防治技術手冊之七"工業廢水以活性碳處理"經 濟部工業局污染防治技術服務團.財團法人中國技術服務社編印,民國七十九年四月。
王鳳英編譯,”界面活性劑的原理與應用”,高立圖書有限公司,民國八十二年六月,五版。
賈秉文譯,物理化學,四版,台灣東華,台北,民國69年
陶雨台譯,表面物理化學,千華出版公司,民國七十七年五月。
趙承琛,”工業升級之特用化學品-界面活性劑”,復文書局,民國八十二年十二月。
趙承琛,”界面科學基礎”,復文書局,民國八十四年十月,十五版。
趙煥平"廢水水質特性對毒性物質揮發之影響"國立中央大學環境工程研究所碩士論文,民國八十一年六月。
環保署,「有害空氣污染物排放管制規範研訂計畫」,民國83年。
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2003-12-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明