參考文獻 |
185
參考文獻
1. Amman R. I., Ludwig W., and Schleifer K. H. (1995) Phylogenetic identification
and in situ detection of individual microbial cells without cultivation. Microbial
2. APHA, AWWA, and WPCF (1995) Standard Methods for the Examination of
Water and Wastewater, 19th Edition, American Public Health Association,
3. ASCE and WEF, (1992) Design of Municipal Wastewater Treatment plants. ASCE
Manual and Report on Engineering.
4. Baker P. S. and Dold P. L. (1996) Denitrification behaviour in biological excess
phosphorus removal activated sludge systems. Wat. Res., 30(4), 769-780.
5. Barlindhaug J. and Degaard H. (1996) Thermal hydrolysate as a carbon source for
denitrification. Wat. Sci. Technol., 33(12), 99-108.
6. Bond P.L., Hugenholtz P., Keller J., and Blackall L.L., (1995) Bacterial
community structures of phosphate-removing and non-phosphate-removing
activated sludge from sequencing batch reactors. Appl. Environ. Microbiol.,
5), 1910-1916.
7. Burrell P. C., Keller J., and Blackall L. L. (1998) Microbiology of a
nitrite-oxidizing bioreactor. Appl. Environ. Microbiol,. 64(5), 1878-1883.
8. Capodaglio A. G., Jones H. V., Novotny V., and Feng X. (1991) Sludge bulking
analysis and forecasting application of system identification and artificial
neural computing technologies. Wat. Res., 25, 1217-1224.
9. Cech J. S. and Hartman P. (1993) Competition between polyphosphate and
polysaccharide accumulating bacteria in enhanced biological phosphate
removal system. Wat. Res., 27(7), 1219-1225.
10. Charef A., Ghauch A., Baussand P., and Martin-Bouyer M. (2000) Water quality
monitoring using a smart sensing system. Measurement, 28, 219-224.
186
11. Charpentier J., Godart H., Martin G., and Mogno Y. (1989) Oxidation reduction
potential (ORP) regulation as a way to optimize aeration and C, N and P
removal: experience basis and various full-scale example. Wat. Sci. Technol.,
21, 1209-1223.
12. Choi D. J. and Park H. (2001) A hybrid artificial neural network as a software
sensor for optimal control of a wastewater treatment process. Wat. Res. 35(16),
3959-3967.
13. Chou Y. J., Kuo W. L., Huang H. L., and Ouyang C. F.(2001) The characteristic of
nutrient removal in the multiple stages enhanced biological nutrient removal
process by using step-feed approach. 1st IWA Asia-Pacific Regional
Conference, 531-536, Fukuoka, Japan.
14. Chou Y. J., Ouyang C. F., Kuo W. L., and Huang H. L. (2003) Denitrifying
characteristics of the multiple stages enhanced biological nutrient removal
process with external carbon sources. Journal of Environmental Science and
Health Part-A. (Accepted)
15. Chou Y. J., Ouyang C. F., and Kuo W. L. (2003) Feedforward artificial neural
networks for nutrients removal simulation in multiple stages enhanced
biological nutrient removal process. Journal of the Chinese Institute of
Engineers. (Accepted)
16. Chuang S. H., Ouyang C. F., Yuang H. C., and You S. J. (1998) Phosphorus and
polyhydroxyalkanoates variation in a combined process with activated sludge
and biofilm. Wat. Sci. Technol., 37(4-5), 593-597.
17. Comeau Y. Hall K. J., and Oldham W. K. (1988) Denitrification of
poly-β-hydroxybutyrate and poly-β-hydroxyvalerate in activate sludge by
gas-liquid chromatography. App. Environ. Microbiol., 54, 2325-2327.
18. Côté M., Grandjean B. P. A., Lessard P., and Thibault J. (1995) Dynamic
modeling of the activated sludge process: improving prediction using neural
networks. Wat. Res. 29(4), 995-1004.
187
19. Dabert P., Sialve B., Delgenes J.P., Moletta R., and Godon J.J., (2001)
Characterization of the microbial 16S rDNA diversity of an aerobic
phosphorus-removal ecosystem and monitoring of its transition to nitrate
respiration. Appl. Microbiol. Biotechnol., 55(4), 500-509.
20. Deinema M. H., Loosdrecht M. van, and Scholten A. (1985) Some physiological
characteristics of Acinetobacter spp. Accumulating large amount of phosphate.
Wat. Sci. Technol,. 17, 119-125.
21. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D.,
Liesack W., and Tiedje J. M. (2002) Methylocapsa acidiphila gen. nov., sp. nov.,
a novel methane-oxidizing and nitrogen-fixing acidophilic bacterium from
Sphagnum bog. Int. J. Syst. Evol. Microbiol., 52(1), 251-261.
22. Du Y. G., Tyagi R. D., and Bhamidimarri R. (1999) Use of fuzzy neural-net model
for rule generation of activated sludge process. Process Biochemistry, 35,
77-83.
23. Frick B. R. and Richard Y. (1985) Experience with biological denitrification in a
full scale drinking water treatment. Vom. Wasser, 64, 145-154.
24. Fu C. and Poch M. (1995) System identification and real-time pattern recognition
by neural networks for activated sludge process. Environmental Intemational,
21(1), 57-69.
25. Fuente M. J. and Vega P. (1999) Neural networks applied to fault detection of a
biotechnological process. Engineering Application of Artificial Intelligence, 12,
569-584.
26. Fujii S. (1996) Theoretical analysis on nitrogen removal of the step-feed
anoxic-oxic activated sludge process and its application for the optimal
operation. Wat. Sci. Technol., 34(1-2), 459-466.
27. Glass C. and Silverstein J. (1998) Denitrification kinetics of high nitrate
concentration water: pH effect on inhibition and nitrite accumulation. Wat. Res.,
32(3), 831-839.
188
28. Görgün E., Artan N., Orhon D. and Sözen S. (1996) Evaluation of nitrogen
removal by step feeding in large treatment plants. Wat. Sci. Technol., 34(1-2),
253-260.
29. Gontarski C. A., Rodrigues P. R., Mori M., and Prenem L. F. (2000) Simulation of
an industrial wastewater treatment plant using artificial neural networks.
Computers and Chemical Engineering, 24, 1719-1723.
30. Gumaelius L., Magnusson G., Pettersson B. and Dalhammar G. (2001)
Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated
from activated sludge. Int. J. Syst. Evol. Microbiol., 51(3), 999-1006
31. Häck M. and Köhne M. (1996) Estimation of wastewater parameters using neural
networks. Wat. Sci. Technol. 33(1), 101-115.
32. Hajda P., Novotny V., Feng X., and Yang R. (1998) Simple feedback logic, genetic
algorithms and artificial neural networks for real-time control of a collection
system. Wat. Sci. Technol. 38(3), 187-195.
33. Hallin S., Rothman M., and Pell M. (1996) Adaptation of denitrifying bacteria to
acetate and methanol in activated sludge. Wat. Res.,. 30(6), 1445-1450.
34. Halling-Sørensen B. and Jørgensen S. E. (1993) The Removal of Nitrogen
Compounds from wastewater. Elsevier, Denmark, 55-151.
35. Hamoda M. F. Al-Ghusain I. A. and Hassan A. H. (1999) Integrated wastewater
treatment plant performance evaluation using artificial neural networks. Wat.
Sci. Technol. 40(7), 55-65.
36. Hashsham S. A., Marsh T. L., Dollhopf S. L., Fernandez A. S., Dazzo F. B.,
Hickey R. F., Criddle C. S., and Tiedje J. M. (2001) Advances in Water and
Wastewater Treatment Technology-molecular technology, nutrient removal,
sludge reduction, and environmental health. Elsevier Science, 67-78.
37. Henze M., Harremoës P., and Roed Jensen O. (1977) Combined sludge
denitrification of sewage utilizing internal carbon source. Prog. Wat. Tech., 8,
589-599.
189
38. Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C., Marais G.v.R., and van
Loosdrecht M.C.M. (1999) Activated sludge model No.2d. Wat. Sci. Technol.,
39(1), 165-182.
39. Her J. J. and Huang J. S. (1995) Influences of carbon source and C/N ratio on
nitrate/nitrite denitrification and carbon breakthrough. Bioresource Technol., 54,
45-51.
40. Hiraishi A., Masamune K., and Kitamura H. (1989) Characterization of the
bacterial population structure in an anaerobic-aerobic activated sludge system
on the basis of respiratory quinine profiles. Appl. Environ. Microbiol,. 55(4),
897-901.
41. Holt G. J., Krieg R. N., Sneath H. P., Staley T. J., and Williams T. S. (1994)
Bergey’s manual of determinative bacteriology. 9th edition, Williams & Wilkins,
Maryland.
42. Hussain M. A. (1999) Review of the applications of neural networks in chemical
process control-simulation and online implementation. Artificial Intelligence in
Engineering, 13, 55-68.
43. Isaacs S., Henze M., Søeberg H., and Kümmel M. (1994) External carbon source
addition as a means to control an activated sludge nutrient removal process.
Wat. Res., 28(3), 511-520.
44. Jenkins D., Richard M. G., and Daigger G. T. (1993) Manual on the causes and
control of activated sludge bulking and forming. 2nd edition, Lewis Publishers.
45. Kim S., Lee H., Kim J., Kim C., Ko J., Woo H., and Kim S. (2002) Genetic
algorithms for the application of activated sludge model No.1. Wat. Sci.
Technol., 45(4-5), 405-411.
46. Kurt M., Dunn I. J., and Bourne J. R. (1987) Biological denitrification water using
autotrophic organisms with hydrogen in a fluidized-bed biofilm reactor.
Biotechnology Bioengineering, 29, 493-501.
47. Larachi F. (2001) Neural network kinetic prediction of coke burn-off on spent
190
MnO2/CeO2 wet oxidation catalysts. Applied Catalysis, 30, 141-150.
48. Lee D. S. and Park J. M. (1999) Neural network modeling for on-line estimation
of nutrient dynamics in a sequentially-operated batch reactor,” Journal of
Biotechnology, 75, 229-239.
49. Lee N. M. and Welander T. (1996) The effect of different carbon sources on
respiratory denitrification in biological wastewater treatment. Journal of
Fermentation and Bioengineering, 82(3), 227-285.
50. Li L., Kato C., and Horikoshi K. (1999) Microbial diversity in sediments collected
from the deepest cold-seep Area. Mar. Biotechnol., 1(4), 391-400.
51. Liu W. T., Mino T., Nakamura K. and Matsuo T. (1996) Glycogen accumulating
population and its anaerobic substrate uptake in anaerobic-aerobic activated
sludge without biological phosphorus removal. Wat. Res., 30(1), 75-82.
52. Liu E. T., Marsh T. L., Cheng H., and Forney L. J. (1997) Characterization of
microbial diversity by determining terminal restriction fragment length
polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol,.
63(11), 4516-4522.
53. Liu W. T., Wu J. H., Chan O. C., Cheng S. S., Tseng I. C., and Fang H. P. (2001)
Comparison of microbial communities in anaerobic granulated sludge reactors
treating benzoate, methyl benzoate and terephthalate. Advances in Water and
Wastewater Treatment Technology-molecular technology, nutrient removal,
sludge reduction, and environmental health. Elsevier Science, 79-88.
54. Liu W.T., Nielsen A.T., Wu J.H., Tsai C.S., Matsuo Y., and Molin S. (2001) In situ
identification of polyphosphate and polyhydroxyalkanoate-accumulating traits
for microbial populations in a biological phosphorus removal process. Environ.
Microbiol., 3(2), 110-122.
55. Manz W., Wagner M., Amann R., and Schleifer K. H. (1994) In situ
characterization of the microbial consortia active in two wastewater treatment
plants. Wat. Res., 28(8), 1715-1723.
191
56. Marsili-Libell S. and Giunti L. (2001) Fuzzy predictive control for nitrogen
removal in biological wastewater treatment. Instrumentation, Control and
Automation 2001(ICA 2001), IWA publishing, 37-44.
57. Matsuo Y. (1994) Effect of the anaerobic SRT on enhanced biological phosphorus
removal. Wat. Sci. Technol., 28, 127-136.
58. Matsuo Y. and Kurisu F. (2001) Observation and model analysis for the bacterial
community structure of activated sludge. Advances in Water and Wastewater
Treatment Technology-molecular technology, nutrient removal, sludge
reduction, and environmental health. Elsevier Science, 3-12.
59. Metcalf and Eddy (1991) Wastewater Engineering-treatment, disposal, and reuse.
McGraw-Hill, Inc.
60. McCarty P. J., Beck and Amant (1969) Biological denitrification of waste water
by addition of organic materials. 24th Ind. Waste Conf., Purdue University,
1271-1285.
61. Mino T., Satoh H. and Matsuo T. (1994) Metabolisms of different bacterial
populations in enhanced biological phosphate removal process. Wat. Sci.
Technol., 29(7), 67-70.
62. Mino T. (1998) Handout of Advanced Wastewater Biological Treatment
Engineering., National Central University, Taiwan.
63. Mino T., Satoh H., Onuki M., Akiyama T., Nomura T., and Matsuo T. (2001)
Strategic approach for characterization of bacterial community in enhanced
biological phosphate (EBNR) process. Advances in Water and Wastewater
Treatment Technology-molecular technology, nutrient removal, sludge
reduction, and environmental health. Elsevier Science, 21-30.
64. Mohseni-Bandpi A. and Elliott D. J. (1998) Groundwater denitrification with
alternative carbon sources. Wat. Sci. Technol., 38(6), 237-243.
65. Mohseni-Bandpi A., Elliott D. J., and Momeny-Mazdeh A. (1999) Denitrification
of groundwater using acetate acid as a carbon source. Wat. Res., 40(2), 53-59.
192
66. Monteith H. D. (1980) Industrial waste carbon source for biological denitrification.
Prog. Wat. Tech., 12, 127-141.
67. Murray R. G. E. (chairman) et al. (1984) Bergey’s manual of systematic
bacteriology. Williams & Wilkins.
68. Myers R. M., Fischer S. G., Lerman L. S., and Maniatis (1985) Near all single
base substitutions in DNA fragments joined to a GC clamp can be detected by
denaturing gradient gel electrophoresis. Nucleic Acid Res., 13(9), 3131-3145.
69. Nasu M., Yamaguchi N., and Tani K. (2001) Microbial community structure and
their activity in aquatic environment. Advances in Water and Wastewater
Treatment Technology-molecular technology, nutrient removal, sludge
reduction, and environmental health. Elsevier Science, 31-40.
70. Nielsen T. A., Liu W. T., Filipe C., Grady L., Molin S., and Stahl A. D. (1999)
Identification of a novel group of bacteria in sludge from a deteriorated
biological phosphorus removal reactor. Appl. Environ. Microbial., 65(3),
1251-1258
71. Olsson G. and Newell B. (1999) Wastewater Treatment Systems: Modeling,
Diagnosis and Control. IWA Publishing.
72. Oh J. and Silverstein J. (1999) Oxygen inhibition of activated sludge
denitrification. Wat. Res., 33(8), 1925-1937.
73. Ouyang C. F., Chou Y. J., Pai T. Y., Chang H. Y., and Liu W. T.(2001)
Optimization of enhanced biological wastewater treatment processes using a
step-feed approach. Advances in Water and Wastewater Treatment
Technology-molecular technology, nutrient removal, sludge reduction, and
environmental health. Elsevier Science, 295-304.
74. Pirsing A., Wiesmann U., Kelterbach G., Röck H. Eichner B. Szukal S., and
Schulze G. (1996) On-line monitoring and modeling based process control of
high rate nitrification-lab scale experimental results. Bioprocess Engineering,
15, 181-188.
193
75. Rauch W. and Harremoes P. (1999) Genetic algorithms in real time control applied
to minimize transient pollution from urban wastewater system. Wat. Res., 33(5),
1265-1277.
76. Richard T. (1980) Denitrification of water for human consumption. Prog. Wat.
Tech., 12, 173-191.
77. Rittmann B. E. and McCarty P. L. (2001) Environmental Biotechnology Principles
and Applications. McGraw-Hill, New York, United State, 470-524.
78. Reddy M. (1998) Biological and Chemical System for Nutrient Removal. Water
Environment Federation, Alexandria, United State, 101-189.
79. Schulze R., Spring S., Amann R., Huber I., Ludwig W., Schleifer K. H., and
Kampfer P. (1999) Genotypic diversity of Acidovorax strains isolated from
activated sludge and description of Acidovorax defluvii sp. Nov. Syst. Appl.
Microbiol., 22(2), 205-214.
80. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K. H. (1997) Phylogenetic
analysis and in situ identification of bacteria in activated sludge. Applied and
Environmental Microbiology. 63(7), 2884-2896.
81. Stensel, Loehr, and Lawrence (1973) Biological kinetics of suspended growth
denitrification. WPCF, 45, 399-410.
82. Surmacz-Górska J., Cichon A., and Miksch K. (1997) Nitrogen removal from
wastewater with high ammonia nitrogen concentration via shorter nitrification
and denitrification. Wat. Sci. Technol., 36(10), 73-78.
83. Syu M. J. and Chen B. C. (1998) Back-propagation neural network adaptive
control of a continuous wastewater treatment process. Ind. Eng. Chem. Res., 37,
3625-3630.
84. Tiedje J. Fernandez A., Hashsham S., Dollhopf S., Dazzo F., Hickey R., and
Criddle C. (2001) Stability, persistence and resilience in anaerobic reactor: a
community unveiled. Advances in Water and Wastewater Treatment
Technology-molecular technology, nutrient removal, sludge reduction, and
194
environmental health. Elsevier Science, 13-20.
85. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., and Schleifer K.
H. (1994) Development of an rRNA-targeted oligonucleotide probe specific for
the genus Acinetobacter and its application for in situ monitoring in activated
sludge. Appl. Environ. Microbiol., 60(3), 792-800.
86. Wentzel M. C., Lotter L. H., Ekama G. A., Loewenthal R. E., and Marais G. R.
(1991) Evaluation of biochemical models for biological excess phosphorus
removal. Wat. Sci. Technol., 23, 567-576.
87. Yagi S. and Shiba S. (1999) Application of genetic algorithms and fuzzy control to
a combined sewer pumping station. Wat. Sci. Technol., 39(9), 217-224.
88. Yu R. F., Liaw S. L., Chang C. N., and Cheng W. Y. (1998) Appling real-time
control to enhance the performance of nitrogen removal in the continuous-flow
SBR system. Wat. Sci. Technol., 38(3), 271-280.
89. Zhao H., Isaacs S. H., Søeberg H., and Kümmel M. (1995) An analysis of nitrogen
removal and control strategies in an alternating activated sludge process. Wat.
Res., 29(2), 535-544.
90. Zhu J., Zurcher J., Rao M., and Meng M. Q-H. (1998) An on-line wastewater
quality prediction system based on time-delay neural network. Engineering
Application of Artificial Intelligence. 11, 747-758.
91. 歐陽嶠暉,下水道工程學,長松出版社,台北(2000)。
92. 蔡勇斌(1993)活性污泥系統自動化與最佳化動態操作控制之研究,博士論
文,國立中央大學環境工程研究所。
93. 張謝淵(2000)AOAO 污水處理程序去除營養鹽之特性研究,博士論文,國立
中央大學環境工程研究所。
94. 游勝傑(2001)併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究,博士
論文,國立中央大學環境工程研究所。 |