博碩士論文 87326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.224.44.21
姓名 王俊凱(Chun-kai Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣地區大氣氣膠特性之研究-高雄、台北都會區氣膠特性與污染來源推估
(The study of atmospheric aerosols in Taiwan — the characteristics and sources of particles in Kao-hsiung and Taipei areas.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠本身化學特性會直接影響微粒的散光係數,因此本研究為了了解不同類型都會區大氣PM2.5細氣膠微粒的化學特性對散光係數造成的影響,並追溯氣膠的污染來源類型,本研究於1999年12月20日至2000年1月28日間,以及2000年3月20日至2000年5月18日間,分別在高雄市小港區港興活動中心及臺北市交通部中央氣象局使用Honeycomb denuder及cyclone進行氣膠採樣,探討大氣氣膠的化學特性。本研究分析了PM2.5氣膠的水溶性離子、總碳量、金屬成份及氣膠含水量,並使用過去建立的迴歸模式推估氣膠的理論含水量(Lee and Hsu , 1998)。
小港地區在採樣期間平均質量濃度為93.0μg/m3,標準偏差為29.1μg/m3,平均質量散光效率為2.37m2/g。細粒徑氣膠主要成份為水溶性離子,其所佔的總質量濃度百分比為33.5%,碳含量佔27.6%、金屬元素佔18%、含水量佔4.6%,未解析佔16.3%。
化學物種中硫酸鹽、硝酸鹽與綠光散光係數間有高相關性,以此組合利用多元線性複迴歸模式推估的氣膠散光係數與量測值間有中高度的線性關係。以加強因子法分析得知PM2.5細粒徑氣膠中的SO42-及K+大都來自非海鹽氣膠;Cl-、Mg2+、Ca2+主要是來自海水飛沫。由氯離子損失法所推估的結果指出,高雄水溶性離子的污染源中,海水飛沫的貢獻量不大,以二次硝酸鹽與二次硫酸鹽為主要污染源。以主成分推估結果顯示高雄地區以-二次光化反應污染、海水飛沫來源、農廢燃燒為主要的污染來源。
台北地區在採樣期間平均質量濃度為50μg/m3,標準偏差為22.3μg/m3,平均質量散光效率為3.1m2/g。細粒徑氣膠來源為水溶性離子,其所佔的總質量濃度百分比為35%,碳含量佔31%、金屬元素佔12%、含水量佔2%,未解析佔20%。
多元線性複迴歸模式推估氣膠散光係數的主要參數為硫酸鹽和硝酸鹽。以加強因子法分析得知PM2.5細粒徑氣膠中的SO42-、K+及Ca2+大都來自非海鹽氣膠;Cl-及Mg2+主要是來自海水飛沫。由氯離子損失法所推估的結果指出,台北水溶性離子的污染源中,以二次硫酸鹽為主要污染源。以主成分推估結果顯示台北地區以-二次光化反應污染、農廢燃燒為主要的污染來源。
摘要(英) Aerosol chemical properties are important in source apportionment, health effect, and radiative forcing. The goal of this study is to compare aerosol characteristics in terms of chemical properties on light-scattering coefficient and apportionment of source contributions from two different types of city in Taiwan. Atmospheric aerosols were collected using Honeycomb denuder and cyclone in Kao-hsiung City from December 20, 1999 to January 28, 2000 and in Taipei City from March 20 to May 18, 2000. Water-soluble ions, carbonaceous contents, metal elements, and water mass of aerosols are analyzed. A regression model for theoretical aerosol water mass is adopted for comparisons with the measurements (Lee and Hsu , 1998).
The daytime average of PM2.5 in Kao-hsiung City is 93.0μg/m3 with a standard deviation of 29.1μg/m3. Meanwhile, the average of aerosol mass scattering efficiency during this time period is at 2.37m2/g. Chemical analysis shows the mass fraction of water-soluble ions, carbonaceous contents, metal elements, water content, and unknown is 33.5%, 27.6%, 18%, 4.6%, and 16.3%, respectively.
Among the analyzed species, sulfate and nitrate ions are correlated well with aerosol light-scattering coefficient. The analysis of enhancement factor reveals sulfate and potassium ions are mostly originated from non-sea-salt aerosol, while chloride, magnesium, and calcium ions are mainly from sea-salt. As pointed out by chlorine loss algorithm, the water-soluble ions in Kao-hsiung city is mostly from the secondary photochemical reaction. The APCA analysis shows Kao-hsiung aerosols are contributed from the secondary reaction, sea-salt, and agricultural burning.
In contrast, the daytime average of PM2.5 in Taipei City is relatively lower at 50μg/m3 with a standard deviation of 22.3μg/m3. During this period, the average of aerosol mass scattering efficiency is higher at 3.1m2/g. Water-soluble ion is still the prominent species, the mass fraction of water-soluble ions, carbonaceous contents, metal elements, water content, and unknown is 35%, 31%, 12%, 2%, and 20%, respectively.
The regression analysis shows sulfate and nitrate ions are the two parameters adopted in the model to account for the variations of aerosol light-scattering coefficient. Similarly, the analysis of enhancement factor reveals sulfate, calcium and potassium ions are mostly originated from non-sea-salt aerosol, while chloride and magnesium ions are mainly from sea-salt. The chlorine loss algorithm infers the water-soluble ions in PM2.5 from Taipei City are mostly from the secondary photochemical reaction. The APCA analysis confirms Taipei City aerosols are contributed from the secondary reaction and agricultural burning.
關鍵字(中) ★ 絕對主成分分析
★ 污染來源推估
★ 散光係數
★ 含水量
★ 氣膠化學組成
★ PM2.5
關鍵字(英) ★ source apportionment
★ light-scattering coefficient
★ water mass of aerosols
★ aerosol chemical properties
★ PM2.5
★ APCA b
論文目次 第一章 前言 1
1.1. 研究動機 1
1.2. 研究目的 3
第二章 文獻回顧 4
2.1. 氣膠的分類與來源以及對人體的危害性 4
2.1.1. 氣膠的分類與來源 4
2.1.2. 對人體的危害性 5
2.1.3. 氣膠的化學組成與濃度 7
2.1.4. 氣膠質量濃度 8
2.1.5. 氣膠含水量 9
2.2. 海岸氣膠的化學特性 11
2.2.1. 多元線性迴歸消光模式 13
2.2.2. 化學物種散光效率 17
2.3. 微粒元素分析方法 -- XRF 18
2.4. 多變量分析 20
2.4.1. 主成份分析法 20
2.4.2. 因子分析(Factor Analysis, FA) 20
2.4.3. 多元迴歸分析(Multiple Linear Regression Analysis, MLRA) 21
第三章 研究方法及步驟 23
3.1. 採樣地點及時間 23
3.2. 採樣量測方法 27
3.2.1. 氣膠化學成份採樣 27
3.3. 採樣標準操作程序 31
3.3.1. 氣象塔 31
3.3.2. 浮子流量計校正 31
3.3.3. 細粒徑氣膠及其氣體前驅物採樣 31
3.3.4. 碳元素及水溶性離子 32
3.3.5. 含水量 32
3.3.6. 金屬元素 32
3.3.7. 樣品保存方法、時間 33
3.4. 樣品分析方法 33
3.4.1. 水溶性離子分析方法 33
3.4.2. 氣體前驅物特性分析 34
3.4.3. 含碳量的分析方法 34
3.4.4. 金屬元素的分析方法 35
3.4.5. 氣膠含水量推估 35
3.5. 氣膠來源及其貢獻量推估 37
3.5.1. 氯離子損失法 37
3.5.2. 絕對主成份分析 42
第四章 結果與討論 48
4.1. PM2.5細氣膠的化學組成 48
4.1.1. 氣膠質量濃度 51
4.1.2. 氣膠水溶性離子平均質量濃度與陰陽平衡 57
4.1.3. 理論氣膠含水量質量濃度 69
4.1.4. 氣膠金屬元素質量濃度 74
4.1.5. 氣膠的總碳量質量濃度 81
4.1.6. 受沙塵暴影響台北地區微粒化學組成的探討 89
4.2. 實測氣膠含水量 95
4.3. 化學物種質量濃度與散光係數間的探討 107
4.3.1. 氣膠質量濃度推估散光係數 109
4.3.2. 氣膠散光係數與化學組成多元線性迴歸分析 112
4.4. PM2.5氣膠污染來源推估 115
4.4.1. PM2.5中各特徵離子的比值及加強因子法 115
4.4.2. 氯離子損失法 125
4.4.3. 絕對主成份分析法 135
第五章 結論 144
參考文獻 146
參考文獻 謝佩憶, 台灣地區大氣氣膠特性之研究-墾丁氣膠組成及含水率對散光係數的影響及污染來源推估, 國立中央大學環境工程研究所碩士論文,. (1999)
黃明雄, 台灣地區大氣氣膠特性之研究-墾丁氣膠組成及濃度對大氣能見度的影響, 國立中央大學環境工程研究所碩士論文,. (1998)
許文昌, 微粒含水量直接量測技術之研究, 國立中央大學土木工程研究所博士論文,. (1997)
許文昌, 微粒含水量直接量測技術之研究, 國立中央大學土木工程研究所博士論文,. (1997)
Ansari A.S. and Spyros N.Pandis, Prediction of Multicomponent Inorganic Atmospheric Aerosol Behavior, Atmos. Environ., vol.33, pp. 745-757. (1999)
Appel B.R., Tokiwa Y., Hsu J. Kothny E.L. and Hahn E., Visibility as Related to Atmospheric Aerosol Constituents, Atmos. Environ., vol.9, pp. 1525. (1985)
Ayers G.P., Gras J.L., Gillett R.W.and Bentley S.T.,The LaTrobe Valley aerosol visibility study, A survey of results. Clean Air, vol.24, pp. 18-26. (1990)
Ayers G.P., Gras J.L., Gillett R.W.and Bentley S.T.,The LaTrobe Valley aerosol visibility study, A survey of results. Clean Air, vol.24, pp. 18-26. (1990)
Ayers G.P., Gras J.L., Gillett R.W.and Bentley S.T.,The LaTrobe Valley aerosol visibility study, A survey of results. Clean Air, vol.24, pp. 18-26. (1990)
Ayers G.P., Gras J.L., Gillett R.W.and Bentley S.T.,The LaTrobe Valley aerosol visibility study, A survey of results. Clean Air, vol.24, pp. 18-26. (1990)
Chan Y. C., Simpson R.W. and Vowles P. D., Characterization of chemical species in PM2.5 and PM10 Aerosol in Brisbane, Australia, Atmos. Environ., vol.31, pp. 3773-3785. (1997)
Chan Y. C., Simpson R.W. and Vowles P. D., Characterization of chemical species in PM2.5 and PM10 Aerosol in Brisbane, Australia, Atmos. Environ., vol.31, pp. 3773-3785. (1997)
Chow J. C., Watson J. G., and Lowenthal D. H., Sources and Chemistry of PM10 Aerosol in Santa Barbara County, CA, Atmos. Environ., vol.30, pp. 1491-1499. (1996)
Davis D.L., and Jixiang G.,Airborne Paticulate Syudy in Five cites of China, Atmos. Environ., vol.34, pp.2703-2711. (2000)
Dzubay T.G., Stevens R.K. and Lewis C.W., Visibility and Aerosol Composition in Huston, Texas, Environ. Sci. Technol., Vol.25A, pp.514-524. (1982)
Eleftheriadis K., Balis D., Ziomas I. C., Colbeck I., and Manalis N. , Atmospheric Aerosol and Gaseous Species in Athens, Greece, Atmos. Environ., Vol.32, pp. 2183-2191. (1998)
Dua S.K. and Hopke P.K., Hygroscopic Growth of Assorted Indoor Aerosols, Aerosol Sci. Technol., Vol.24 , pp.151-160. (1995)
Gras J.L., Gillett R.W., Bentley S.T., Ayers G.P. and Firestone T.,CSIRO-EPA Melbourne Aerosol Study, CSIRO Division of Atmospheric Research. (1991)
Gray H. A. and Cass G. R., Source Contributions to Atmospheric Fine Carbon Particle Concentrations, Atmos. Environ.,vol.32, pp. 3805-3825. (1998)
Gray H. A. and Cass G. R., Source Contributions to Atmospheric Fine Carbon Particle Concentrations, Atmos. Environ.,vol.32, pp. 3805-3825. (1998)
Handbook of Chemistry and Physics, The Chemical Rubber Co., Cleveland,OH. (1963)
Handbook of Chemistry and Physics, The Chemical Rubber Co., Cleveland,OH. (1963)
Handbook of Chemistry and Physics, The Chemical Rubber Co., Cleveland,OH. (1963)
Hering S., Eldering A. and Seifeld J.H., Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., vol.31, pp1-11.(1997)
Hering S., Eldering A. and Seifeld J.H., Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., vol.31, pp1-11.(1997)
Hering S., Eldering A. and Seifeld J.H., Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., vol.31, pp1-11.(1997)
Hering S., Eldering A. and Seifeld J.H., Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., vol.31, pp1-11.(1997)
Hering S., Eldering A. and Seifeld J.H., Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., vol.31, pp1-11.(1997)
Hering S., Eldering A. and Seifeld J.H., Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., vol.31, pp1-11.(1997)
Lee C. T. and Hsu W. C., A Novel Method to Measure Aerosol Water Mass, Journal of Aerosol Science, vol.29, pp. 827-837. (1998)
Lee C. T. and Hsu W. C., A Novel Method to Measure Aerosol Water Mass, Journal of Aerosol Science, vol.29, pp. 827-837. (1998)
Lee C. T. and Hsu W. C., A Novel Method to Measure Aerosol Water Mass, Journal of Aerosol Science, vol.29, pp. 827-837. (1998)
Lee C. T. and Hsu W. C., A Novel Method to Measure Aerosol Water Mass, Journal of Aerosol Science, vol.29, pp. 827-837. (1998)
Ning D. T., Zhong L. X. and Chung Y. S., Aerosol Size distribution and Elemental Composition in Urban Areas of Northern China. Atmos. Environ., vol.60, pp.2355-2362. (1996)
Ning D. T., Zhong L. X. and Chung Y. S., Aerosol Size distribution and Elemental Composition in Urban Areas of Northern China. Atmos. Environ., vol.60, pp.2355-2362. (1996)
Ning D. T., Zhong L. X. and Chung Y. S., Aerosol Size distribution and Elemental Composition in Urban Areas of Northern China. Atmos. Environ., vol.60, pp.2355-2362. (1996)
Ouimette,J.R., Aerosol Chemical Species Contributions to the Extinction Coefficient. PH.D thesis, California Institute of Technology, Pasadena, California,(1981)
Ouimette,J.R., Aerosol Chemical Species Contributions to the Extinction Coefficient. PH.D thesis, California Institute of Technology, Pasadena, California,(1981)
Roth, B. and Okada, K., On the Modification of Sea-salt Particles in the Coastal Atmosphere, Atmos. Environ., vol.32, pp. 1555-1569. (1998)
Roth, B. and Okada, K., On the Modification of Sea-salt Particles in the Coastal Atmosphere, Atmos. Environ., vol.32, pp. 1555-1569. (1998)
Schenkel A. and Schaber K., Growth of Salt and acid aerosol particles in Humid Air, J. Aerosol sei., Vol.26 pp1029-1039. (1995)
Schenkel A. and Schaber K., Growth of Salt and acid aerosol particles in Humid Air, J. Aerosol sei., Vol.26 pp1029-1039. (1995)
Sloane, C.S. Optical Properties of Aerosols — Comparison of Measurements with Model Calculations, Atmos. Environ., vol.17, pp. 409-416. (1983)
Sweet C. W. and Gatz D. F., Short Communication Summary and Analysis of Available PM2.5 Measurements in Illinois, Atmos. Environ., vol.32, pp. 3309-3320. (1998)
Tang I. N., Fung K.H., Imre D.G. and Munkelwitz H.R., Phase Transformation and Metastability of Hygroscopic Microparticles¸Aerosol Sci Technol., Vol.23., pp.443-453. (1995)
Utsunomiya A. and Wakamatsu S., Temperature and Humidity Dependence on Aerosol Composition in the Northern Kyushu, Japan, Atmos. Environ., vol.30, No.13, pp. 2379-2386. (1996)
Vignati E., G. de Leeuw and Plate E., Coastal Aerosols, Air Mass History and Meteorological Conditions,| J. Aerosol Sci., Vol.28, pp.s5-s6(1997)
Wanggoner A.P. and Weiss R.E., Comparison of Fine Particle Mass Concentration And Light Scattering in Ambient Aerosol, Atmos. Environ., vol.14, pp. 613. (1980)
Wanggoner A.P. and Weiss R.E., Comparison of Fine Particle Mass Concentration And Light Scattering in Ambient Aerosol, Atmos. Environ., vol.14, pp. 613. (1980)
Wanggoner A.P. and Weiss R.E., Comparison of Fine Particle Mass Concentration And Light Scattering in Ambient Aerosol, Atmos. Environ., vol.14, pp. 613. (1980)
Wanggoner A.P. and Weiss R.E., Comparison of Fine Particle Mass Concentration And Light Scattering in Ambient Aerosol, Atmos. Environ., vol.14, pp. 613. (1980)
Zhuang H., Chan C. K., Fang M., Wexler A. S., Formation of nitrate and Non-sea-salt Sulfate on Coarse Particles, Atmos. Environ., vol.33, pp. 4223-4233. (1999)
指導教授 李崇德(Chung-Te Lee) 審核日期 2000-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明