博碩士論文 87346005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.119.111.37
姓名 林凱隆(Kae-Long Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究
(Feasibility Study on Pozzolanic Reactivity of Eco-Cement Incorporating Slags from MSW Incinerator Ashes)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對都市垃圾焚化飛灰進行熔融實驗,並以其熔渣粉體調製不同配比之熔渣水泥,以探討熔渣水泥漿體之卜作嵐反應特性及熔渣粉體取代部份水泥之可行性。 本研究之實驗分成四部份,首先探討都市焚化灰渣在1400℃ 下經30分鐘熔融後之熔渣特性;進而以1400℃熔渣粉體備製不同配比(取代量10- 40%)在不同水膠比(0.29-0.55)之飛灰熔渣水泥漿體,分析其於不同養護齡期之卜作嵐反應特性;並以其熔渣粉體備製不同配比之熔渣單礦物漿體,分析其於不同養護齡期之卜作嵐反應行為;最後並探討不同養護齡期下調質熔渣之卜作嵐反應行為與熔渣水泥漿體之工程材料特性。
實驗結果顯示,所得之調質熔渣CaO約27~34%,SiO2約29~39%及Al2O3則約8~23%,而非鈣質化物為 47~67%,大致可符合C級飛灰規範之要求,且接近高爐爐石熟料,具有延長水泥澆鑄工作時間之特性。
飛灰熔渣水泥漿體之抗壓強度,於養護早期隨著熔渣取代量與水膠比增加而減小,晚期強度則呈明顯上升之趨勢;且低取代量(10%、20%)者超越或接近純水泥,顯示出展現卜作嵐材料提高晚期強度之特性。孔隙結構方面,膠體孔隨著齡期、取代量的增加而增加,熔渣水泥漿體有縮小孔隙之趨勢,另外NMR、XRD分析配合SEM觀察發現,早期漿體即有卜作嵐反應發生,晚期則有消耗Ca(OH)2產生C-S-H膠體的現象,且取代量越大越顯著,顯示熔渣具卜作嵐反應特性,其內部非晶相之活性離子(Si、Al)能消耗水化所形成之Ca(OH)2,而產生C-S-H膠體填充孔隙,將毛細孔轉換成膠孔,進而提高晚期強度。
飛灰熔渣可降低矽酸三鈣與鋁酸三鈣漿體之抗壓強度發展,可能係當熔渣添加後,因稀釋效應會減少單礦物之含量。熔渣對矽酸三鈣漿體早期強度有延緩之現象,至晚期則因熔渣之卜作嵐反應而有加速發展之趨勢。而由DTA分析結果顯示,熔渣可延緩鋁酸三鈣由六方相C4AH13轉為立方相C3AH6之時間,且晚期以穩定之立方相C3AH6為主。另外由XRD分析結果顯示,熔渣矽酸三鈣與熔渣矽酸二鈣漿體於養護晚期(60~90天),因卜作嵐反應消耗Ca(OH)2生成CSH膠體與CAH鹽類,且熔渣成分中以Si2+、Al3+對矽酸三鈣之卜作嵐反應影響較大,且熔渣可減緩石膏與鋁酸三鈣形成AFt與AFm之機會,可延緩鋁酸三鈣之初期水化。由NMR分析結果顯示,熔渣矽酸三鈣初期水化程度具延緩之趨勢,而晚期因卜作嵐反應則呈現加速之趨勢,此外,熔渣矽酸三鈣漿體之聚矽陰離子長度隨齡期增而有增加之趨勢,且較純矽酸三鈣漿體為長。
對90天齡期抗壓強度發展而言,取代量10、20%之洗滌灰系熔渣水泥漿體可超越OPC 1~7 MPa;而底灰系熔渣水泥漿體則可與OPC之抗壓強度發展相當(差值<0.5MPa)。由MIP與膠體空間比分析結果得知,調質熔渣水泥漿體水化產物隨齡期增加而逐漸生成填充孔隙,使總孔隙體積與毛孔體積均逐漸減少,而膠孔則隨齡期增加,顯示熔渣有助於熔渣水泥漿體之緻密化。由XRD及DTA之物種分析得知,熔渣水泥漿體與OPC之水化產物主要為Ca(OH)2、C-S-H及C-A-H,並無明顯差異。TG分析所得結果顯示,熔渣可與Ca(OH)2進行卜作嵐反應,而形成C-S-H膠體或C-A-H鹽類。由NMR分析發現,熔渣水泥漿體之水化程度增加趨勢較純水泥漿體顯著;而聚矽陰離子長度則隨齡期而增加,至齡期90天其值皆大於純水泥漿體,顯示熔渣晚期因卜作嵐反應有助於熔渣水泥漿體內部矽酸鹽類之聚合。以SEM可觀察得熔渣表面與Ca(OH)2進行卜作嵐反應而形成C-S-H膠體,並逐漸成長相互接觸交織成網狀結構,進而提升熔渣水泥漿體之晚期強度。綜合上述結果,熔融處理可將都市垃圾焚化灰渣無害化,且所得熔渣具有材料化之潛力。
摘要(英) This study investigated the pozzolanic activity and the feasibility of using municipal solid waste incinerator (MSWI) ash slag in blended cement. Different replacement ratios were used. The experiments were divided into four parts: (1) the slag was characterized by melting the MSWI ash at 1400oC for 30 minutes; (2) the blended cement pastes were prepared using 1400oC-MSWI fly ash slag at replacement ratios ranging from 10 ~ 40%, with a W/B ratio ranging from 0.29 ~ 0.55, and then were analyzed for their pozzolanic activity at different ages; (3) an assessment was made of the pozzolanic reactions in C3S, C2S and C3A samples with the incorporation of MSWI fly ash slag, with blend ratio ranging from 20% to 40%, at various curing ages; and (4) the pozzolonic reactions and engineering properties of municipal solid waste incinerator ash modified slag blended cements (SBC) with various replacement ratios were monitored.
The results indicated that the slag contained 27~34% CaO, 29~39% SiO2, and 8~23% Al2O3, and approximately 47~67% non-calcium compounds, thus meeting the ASTM C grade for fly ash, which is similar to that of blast furnace slag.
The early unconfined compressive strength (UCS) of the SBC pastes decreased with an increasing replacement ratio and water/cement ratio, whereas the later UCS increased, showing the pozzolanic nature of the pulverized fly ash slag. The later UCS of the SBC paste samples, with less than a 20% replacement, outperformed that of ordinary Portland cement (OPC), indicating that the pozzolanic nature of the pulverized slag increased the later strength. However, the later strength decreased as the increasing replacement ratio was increased from 20% up to 40%. Moreover, the pore volume (<100 Angstrom) of the calcium silicate hydrate (C-S-H) gel that formed during hydration also increased with curing ages, suggesting that active non-crystalline ions in the slag such as Si and Al, could react with Ca(OH)2 to form C-S-H gel, resulting in the filling in the pore spaces, thus increasing the later strength.
The results showed that a lower UCS was observed in C3S and C2S samples with the incorporation of MSWI fly ash slag, possibly due to the partial replacement of the mineral constituents by less active slag. In general, the incorporation of slag into C3S, decreased the initial hydration reaction but increased the pozzolanic reactions in later stages by consuming Ca(OH)2 to form CSH and CAH. This was indicated by the DTA results, which showed a delayed transformation of C3A from C4AH13 to C3AH6. Moreover, the hydration degree and the average length of C-S-H (i.e., the number of Si in linear poly silicate anions in C-S-H gel, the Psi), as determined by applying nuclear magnetic resonance (NMR) techniques, also indicated a delayed initial hydration and an enhanced later pozzolanic reaction. In the C3S-slag paste, the Psi value increased with increasing curing age compared with that of the C3S paste. The results of x-ray powder diffractometer (XRPD) revealed that the pozzolanic reaction in the C3S-slag paste was mainly affected by the Si2+ and Al3+ released by the slag. On the other hand, the incorporation of slag delayed the initial hydration of C3A in C3A-slag paste, and also decreased the formation of ettrigite (AFt) and monosulfoaluminate (AFm) in C3A-gypsum-slag paste.
The 90-day compressive strength developed by SBC pastes with a 10% and 20% cement slag replacement generated from the modification of scrubber ash, outperformed that of OPC by 1-7 MPa, whereas the slags generated from the modified bottom ash series were comparable to OPC, with a difference of less than 0.5 MPa.
From the pore size distribution, as shown by the MIP results, it was found that, with increasing curing ages, the number of gel pores increased and the total porosity and the number of capillary pores decreased — a result that shows that hydrates had filled the pores.
XRPD and DTA species analyses indicated that the hydrates in SBC pastes were mainly Ca(OH)2, the C-S-H gel, and C-A-H salts, like those found in OPC paste. TG analysis also indicated that the slag reacted with Ca(OH)2 to form C-S-H and C-A-H. The average length (in terms of the number of Si molecules) of linear polysilicate anions in C-S-H gel, as determined by NMR, indicated an increase in all SBC pastes with increasing curing age, which outperformed that of OPC at 90 days. The generation of C-S-H gel, with intersections forming a network structure, as observed by SEM, from the surface reaction with Ca(OH)2, also led to the later development of strength in SBC pastes enhanced by the slag. It can be concluded from the study results that MSWI ash can be modified and processed by melting to recover reactive pozzolanic slag, which may then be used in SBC to partially replace cement.
關鍵字(中) ★ 卜作嵐反應
★ 熔渣
★ 熔融
★ 焚化灰渣
★ C-S-H膠體
關鍵字(英) ★ slag
★ C-S-H gel
★ MSWI ash
★ melting process
★ pozzolanic activity
論文目次 第一章 前 言 1
1-1研究緣起與目的 1
1-2 研究內容 2
第二章 文獻回顧 4
2-1 都市垃圾焚化灰渣來源、特性及產量 4
2-1-1 都市垃圾焚化灰渣來源 4
2-1-2 灰渣之產量 6
2-1-3 灰渣特性 7
2-2 熔融處理之探討 17
2-2-1 熔融原理 18
2-2-2 熔融處理之應用與特色 19
2-2-3 灰渣熔融處理之效應與操作因子 21
2-2-4 熔渣種類及特性 24
2-2-5 熔渣資源化利用 25
2-3 單礦物水化行為 26
2-3-1 波特蘭水泥之組成 26
2-3-2 單礦物之基本性質 29
2-3-3 單礦物水化反應機制 34
2-4 水泥之物化特性 42
2-4-1 水泥水化反應機制 42
2-4-2 水泥漿體之微觀結構 44
2-4-3 水泥漿體之巨微觀性質 52
2-5 卜作嵐材料之特性與應用 56
2-5-1 卜作嵐材料之特性 56
2-5-2 卜作嵐材料之反應機制 59
2-5-3 卜作嵐材料與單礦物之反應機制 60
2-5-4 卜作嵐材料取代部分水泥之相關研究 62
2-6 卜作嵐材料成份對水泥之水化特性影響 66
2-7 卜作嵐材料品質控制指標 67
第三章 試驗計畫 70
3-1 前言 70
3-2 試驗設計 70
3-2-1都市垃圾焚化灰渣熔融前處理之操作條件 76
3-2-2水化參數對熔渣水泥漿體試驗條件配置 78
3-2-3 熔渣單礦物漿體試驗條件配置 79
3-3 實驗材料與設備 84
3-3-1 實驗材料 84
3-3-2 實驗設備 100
3-4實驗方法 103
3-4-1 實驗步驟 103
3-4-2 分析方法 106
第四章 水化參數對熔渣水泥漿體性質之影響 119
4-1 前言 119
4-2 不同水灰比熔渣水泥漿體的工程性質 120
4-2-1流度 120
4-2-2凝結時間 120
4-2-3熔渣水泥漿體之抗壓強度發展 121
4- 3熔渣水泥漿體的孔隙結構 126
4-3-1孔隙大小分佈 127
4-3-2孔隙體積分布 132
4-4 熔渣水泥漿體水化參數與抗壓強度關係探討 138
4-4-1 水化程度與抗壓強度之關係 138
4-4-2膠體空間比與抗壓強度之關係 141
4-4-3孔隙率與抗壓強度之關係 145
4- 5結語 149
第五章 熔渣粉體對單礦物之卜作嵐反應行為 151
5-1 前言 151
5-2 熔渣單礦物漿體之抗壓強度發展 151
5-3 熔渣單礦物漿體之水化產物特性分析 154
5-3-1 熔渣矽酸三鈣漿體水化產物分析 154
5-3-2 熔渣矽酸二鈣漿體水化產物分析 155
5-3-3 熔渣鋁酸三鈣漿體水化產物分析 155
5-3-4 添加石膏之熔渣鋁酸三鈣漿體水化產物分析 156
5-4 熔渣單礦物漿體之熱行為分析 164
5-4-1熱差分析 164
5-4-2 熱失重分析 171
5-5 熔渣單礦物漿體NMR分析 179
5-5-1熔渣單礦物漿體特徵峰之變化 179
5-5-2 熔渣單礦物漿體水化程度變化 187
5-5-4 熔渣單礦漿體聚矽陰離子長度之變化 191
5-6 SEM微結構觀察 192
5-6-1 熔渣矽酸三鈣漿體之SEM微結構觀察 192
5-6-2 熔渣矽酸二鈣漿體之SEM微結構觀察 193
5-6-3 熔渣鋁酸三鈣漿體之SEM微結構觀察 193
5-7 結語 198
第六章 焚化灰渣調質熔渣漿體之卜作嵐反應特性 200
6-1 前言 200
6-2調質熔渣水泥漿體之工程特性 200
6-2-1 凝結行為 200
6-2-2 卜作嵐活性指數 200
6-2-4 以抗壓強度分析卜作嵐反應特性 204
6-2-5 卜作嵐活性指數與熔渣成份相關性 206
6-2-6 熔渣水泥漿體相對強度特性 208
6-3 熔渣水泥水化程度與膠體空間比發展 210
6-3-1 水化程度分析 210
6-3-2 膠體空間比分析 212
6-4 熔渣水泥漿體孔隙結構分析 215
6-4-1 孔隙大小分布 215
6-4-2 孔隙體積分布 219
6-5 熔渣水泥漿體水化產物之變化 224
6-5-1 X光粉末繞射分析 224
6-5-2 熔渣水泥漿體TGA/DTA分析 229
6-6 熔渣水泥漿體NMR分析 236
6-6-1 熔渣水泥漿體特徵峰變化 236
6-6-2 熔渣水泥漿體水化程度之變化 242
6-7 熔渣水泥漿體之SEM觀察 246
6-8 結語 251
第七章 結論與建議 253
7-1結論 253
參考文獻 258
參考文獻 Ampadu, K.O. and Kazuyuki, T., Characterization of ecocement pastes and mortars produced from incinerated ashes, Cement and Concrete Research, Vol. 31, pp. 431-436, 2001.
ASTM, “1984 Annual Book of ASTM Standard”, Vol. 04.01~04.24, 1984.
Alba, N., Gasso, E., Vazquez, S. Gasso and Baldasano, J. M., “Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation”, Waste Management, Vol. 21, pp. 313-323, 2001.
Alba, N., Gasso, S., Lacorte, T. and Baldasano, J. M., “Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems”, Journal of the Air & Waste Managment Association, Vol. 47, pp. 1170-1179, 1997.
Arjunan, P., Michael, R. and Della M. Roy, “Silfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”, Cement and concrete research, Vol. 29, No. 8, pp.1305-1311, 1999.
Berg, E.R., Neal, J.A., “Municipal solid waste bottom ash as Portland cement concrete ingredient”, Journal of Materials in Civil Engineering, August, pp.168-173, 1998.
Buchholz, B.A. and Landsberger, S., “Leaching dynamics studies of municipal solid waste incinerator ash”, Journal of the Air & Waste Management Association, Vol. 45, p.579, 1995.
Chatterji, S., A. D. Jensen, N. Thaulow, and P. Christemsens, “ Studies of Alkali-Silica Reaction Part 3 Mechanisms by Which NaCl and Ca(OH)2 Affect the Reaction”, Cement and Concrete Research, Vol. 16, pp. 246-254, 1986.
Chengzhi, Z., W. Aiqin, and T. Mingshu, “The Filling Rolf of Pozzolanic Material”, Cement and Concrete Research, Vol. 26, No. 6, pp. 943-947, 1996.
Chiaki, I.,“Metal recovery from fly ash generated from vitrification process for MSW ash”, Waste Management, Vol.16, No.5/6, pp.501-507, 1996.
Cong, X. and Kirkpatrick,R. J., “17O and 29Si MAS NMR study of hydration and the structure of calcium silicate hydrates”, Cement and Concrete Research, 23, pp. 1065-1077, 1993.
Daube, J., and R. Bakker,“Portland Blast-Furnace Slag Cement :A Review”, ASTM STP 897, pp.5-14, 1986.
Derie, R., “A new way to stabilize fly ash from municipal incinerators”, Waste Management, Vol. 16, No. 8, p.711, 1996.
Eighmy, T.T., Eusden, J.D., Krzanowski, J.E. and et al., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipctator ash”, Environmental Science & Technology, Vol. 29, No. 3, p.629, 1995.
Frearson, J. P. H., and J. M. Uren,“Investigations of a Ground Granulated Blaet Furace Slag Containing Merwinitic Crystallization”, ACI Journal, SP-91, pp.1401-1421, 1986.
Goldin, A., Bigelow, C., Veneman, P., L.M., “Concentration of metals in ash from municipal solid waste combusters”, Chemosphere, Vol.24, No.3, pp.271-280, 1992.
Gong, Y. asn Kirk, D.W., “Behaviour of municipal solid waste incinerator fly ash. I: Gene ral leaching study”, Journal of Hazardous Materials, Vol. 36, p.249, 1994.
Hamernik, J.D. and Frantz, G.C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Vol.88, No. 3, p.294, 1991.
Hanehara, S., Tomosawa, F., Kobayakawa, M. and Hwang, K.R., “Effects of water/powder ratio, mixing ration of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste,” Cement and Concrete Research, Vol. 31, No. 1, pp.31-39, 2001.
Hester, R.E., Harrison, R.M., “Waste incineration and the environment”, The Royal Society of Chemistry, p.49, 1994.
Hiraoka, M. “Advanced sludge thermal processes in Japan ”, Water Science Technology, Vol.30, No.8, pp.139-148, 1994.
Hjelmar, Ole, “Disposal strategies for municipal solid waste incineration residues”, Journal of Hazardous Materials 47, pp.347-350, 1996
IAWG(The International Ash Working Group),“Municipal Solid Waste Incinerator Residues”, Elsevier, 1997.
Iori, J., Balg, J. and Wiechert, C., “Detoxification of municipal waste incineration residues by vitrification”, ABB Review, Vol. 6-7, p.9, 1995
Jakob, A., Stucki, S. and Kuhn, P., “Evaporation of heavy metals during th heat treatment of municipal solid waste incinerator fly ash”, Environmental Science &Technology, Vol. 29, No. 9, p.2429, 1995.
Jazairi, B.E. and Illston, J.M., “The hydration fo cement paste vsing the semi-isothermal method of derivative thermogravity”, Cement and Concrete Research, Vol. 10, pp. 361-366, 1980.
Jean. Pera., Assefa. Wolde, and M. Chabannet, “Hydraulic Activity of Slags Obtained by Vitrification of Wastes,” ACI Materials Journal, Vol. 93, No. 6, pp.132-142 (1996).
Johnson, C.A., Brandenberger, S., and Baccini, P., “Acid Neutralizing capacity of municipal waste incinerator bottom ash”, Environmental Science & Technology, Vol.29, No.1, pp.142-17, 1995.
Kida, A., Noma, Y. and Imada, T., “Chemical Speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, Vol. 16, No. 5-6, p.527, 1996.
Kirby, C.S., Rimstidt, J.D., “Mineralogy and surface properties of municipal solid waste ash”, Environmental Science & Technology, Vol.27, No.4, pp.652-660, 1993.
Kosson, D.S., Sloot, H.A., and Eighmy, T.T., “An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues”, Journal of Hazardous Materials, Vol.47, No. 2-3, pp.43-75, 1996.
Lea, F.M., “The chemistry of cement and concrete”, Edward Arnold, London, 1980
Lipmma, E., M. Magi, A. Samoson, G. Engelhardt, and A. R. Grimmer, “Structural studies of silicates by solid-state high-reslution 29Si magic angle spinning NMR in solids”, J. Amer. Chem. Soc., Vol. 120, pp. 4889-4893, 1980.
Lipmma, E., M. Magi, M. Tavmak,, “A high reslution 29Si NMR study of the hydration of tricalciumsilicate”, Cement and Concrete Reearch, Vol. 12, pp. 597-602, 1982.
Lumley, J. S., Gollop, R. S., Moir, G. K.; Tayor, H. F. W., “Degrees of reaction of the slag in some blends with portland cements”, Cement and Concrete Research, Vol. 26, pp. 139-151, 1996.
Makoto, M. and Eiji S., “Solidification of heavy metal-containing sludges by heating with silicate”, Toxic and Hazardous Waste Disposal, Vol. 3, Ann Arbor Science, pp.141-154, 1981.
Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P., “Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Vol. 70, No. 1-2, pp. 53-70, 1999.
Maoahide Nishigaki,“Reflecting surface-Melt furnace and Utilization of the slag”, Waste Management, Vol.16, No.5/6, pp.445-452, 1996.
Meima, J.A., Comans, R.N.J., “Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash”, Environmental Scence &. Technology, Vol.32, No.5, pp.688-693, 1998.
Mitchell, D.J., Wild, S.DR. and Jones, K.C., “Arrested municipal solid waste incinerator fly ash as a source of heavy metals to the UK environment”, Environmental Pollution, Vol. 76, p.79, 1992.
Moises, F., Joseph C., “Pore size distribution and degree of hydration of metakaolin—cement pastes,” Cement and Concrete Research, Vol. 30 pp. 561-569, 2000.
Morf, L.S., Brunner, P.H., “The MSW incinerator as a monitoring tool for waste management”, Environmental Science & Technology, Vol.32, No.12, pp.1825-1831, 1998.
Ontiveros, J.T., Clapp, T.L. and Kosson, D.S., “Physical properties and chemical species distributions within municipal waste combuster ashes”, Environmental Progress, Vol. 8, No. 3, p.200, 1989.
Pera, J., Coutaz, L., Ambroise, J., Chababbet, M., “Use of incinerator bottom ash in concrete”, Cement and Concrete Research, Vol.27, No.1, pp.1-5, 1997.
Plowaman, C. and J. G. Cabbrra, “Mechanism and Kinetics of Hydration of C3A and C4AF, Extracted from Cement”, Cement and Concrete Research, Vol. 14, No. 2, pp.238-248, 1984.
Pluss, A. and Ferrell, J.R., “Characterization of lead and other heavy metal in fly ash from municipal waste incinerators”, Hazardous waste and Hazardous Materials, 8(4), pp. 275-292 (1991)
Pu, X., “Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index”, Cement and Concrete Research, Vol. 29, No. 6, pp.951-955, 1999.
Reimann, D.O., “Heavy metal in domestic refuse and their distribution in incinerator residues”, Waste Management & Research, Vol.7, pp.57-62, 1989.
Richers, U. and Birnbaum, L., “Detailed investigations of filer asher from c municipal solid waste incineration”, Waste Management & Research, Vol. 6, p.227, 1998.
Sakai, S. and Hiraoka, M., “Municipal solid waste incinerator residue recycling by thermal processes”, Waste Management, Vol. 20, No. 2-3, pp.249-258, 2000.
Sakai, S. , M. Ifiraoka, N. Takeda and T. Tsunemi,“Sewage Sludge Melting Process:Preliminary system design and full-scale plant study ”, Water Science Technology, Vol. 22, No.12, pp.329-338, 1990.
Sanchez, M. I., and M. Frias, “The Pozzolanic Activity of Different Materials, Its Influence On The Hydration Heat In Mortars”, Cement and Concrete Research, Vol. 26, No. 2, pp. 203-213, 1996.
Shunsuke Hanehara, Fuminori Tomosawa , Makoto Kobayakawa , KwangRyul Hwang, Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste, Cement and Concrete Research 31 (2001) 31-39.
Tadashi Ito,“Vitrification of fly ash by swirling-flow furnace”, Waste Management, Vol.16, No.5/6, pp.453-460, 1996.
Tanaka, T. et al., “Demonstration of a multi-purpose incineration melter system”, ANS International Topical Meeting, 1986.
Taylor, H.F.W., “Cement chemistry”, Thomas Telford, 1997.
van der Sloot, H.A., Kosson, D.S. and Hjelmar, O., “Characteristics, treatment and utilization of residues from municipal waste incineration”, Waste Management, Vol. 21, No. 8, pp.753-765, 2001.
Wang, S. W., and K. L. Scrivener, “Hydration Products of Activated Slag Cement”, Cement and Concrete Research, Vol. 25, No. 3, pp. 561-571, 1995.
Wiles, C.C., “Municipal solid waste combustion ash: State-of-the-knowledge”, Journal of Hazardous Materials, Vol.47, pp.325-344, 1996.
Wunsch, P., Greilinger, C., Bienick, D. and Kettrup, A., “Investigation of the binding of heavy metals in thermally treated residues from waste incineration”, Chemosphere, Vol. 32, No. 11, p.2211, 1996.
Young, J.F., Mindess, S., Gray, R. J. and Bentur, A., “The science and technology of civil engineering materials”, Prentice Hall, 1997.
Yousuf, M., Mollah, A., Vempati, R.K., Lin, T.C., and Cocke, D.L., “The Interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems”, Waste Management, Vol. 15, No. 2, pp.137-148, 1995.
Zhang, M. H., R. Lastra, and V. N. Malhotra, “Rice-Husk Ash paste And Concrete: Some Aspects of Hydration and The Microstructure of The Interfacial Zone Between The Aggregare And Paste”, Cement and Concrete Research, Vol. 26, No. 6, pp. 963-977, 1996.
王和源,「爐石製成及添加方式對水泥強度的影響」,國立台灣工業技術學院營建技術組碩士論文,1985。
王鯤生,張旭彰,“垃圾焚化灰渣熔融處理操作特性之研究“,中華民國環境工程學會第七屆廢棄物處理技術研討會,1992
王鯤生、孫常榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分布即溶出特性之探討」,第十三屆廢棄物處理技術研討會論文集,高雄市,pp.463-469,1998。
中國建築工業出版社與中國矽酸鹽學會,「矽酸鹽辭典」,1983年4月。
永澤正行,山內泉,村木宏,「都市こみ燒卻灰の有效利用への取り組み(第1報)」,都市清掃,第48卷,第206號,pp.29-36,1995。
行政院環境保護署統計室編印,「中華民國台灣地區環境統計年報」,2001。
池原洋一與鈴木邦雄等,「清掃工廠のっぅィゥシシュの抵抗爐による熔融處理技術時について」,都市清掃,第39卷,第153號,1986。
村上忠弘與石田貴榮,「污泥熔融に係ゐ指標の檢討」,下水道協會誌,Vol. 26,No. 300,1989。
村上忠宏、石田 貴、鈴木和美、角田幸二、世部 薰,“污泥熔に係ゐ指標の檢討”,下水道協會誌,Vol.2,No.300,pp.32-46(1985)。
沈永年,林仁益與黃兆龍,「核磁共振解析含飛灰水泥漿體之波索蘭反應」,中國土木水利工程學刊,第五卷,第四期,pp.387-392,1993。
李宗彥,「都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為」,碩士論文,國立中央大學環境工程研究所,中壢(2001)。
李建中、李釗、何啟華與鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物灰渣資源化技術與實務研討會論文集,p.193,1996。
阪本明彥與阪谷正人,「こみ垃圾燒卻灰前處理實驗」,都市清掃,第51卷,第225號,pp.438-444,1995。
汪建民等,「陶瓷技術手冊(下)」,中華民國粉末冶金協會與中華民國產業科技發展協進會,1994。
沈得縣,「高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究」,博士論文,國立台灣工業技術學院,台北(1991)。
林志棟,「Mixture Proportion Design of Slag Cement and Slag Concrete」, 特殊水泥混凝土研討會專輯,國立中央大學土木工程研究所,第3-1至3-85頁(1991)。
林利國,「稻殼灰性質與混凝土材料上之利用」,碩士論文,國立台灣工業技術學院,台北(1989)。
林秋國,「水泥與水泥/不飽和聚酯複合體固定化鉻之機制」,博士論文,國立交通大學環境工程研究所博士論文,新竹(1997)。
洪文芳,「爐石在混凝土的應用—固態廢料處理研究方案之二」,財團法人台灣營建研究中心,1985。
許樹恩、吳泰伯,「X光繞射原理與材料結構分析」,中國材料科學學會,1996。
酒井伸一,「一般廢棄物燒卻殘渣の性狀とをの溶出特性」,都市清掃,第48卷,第208號,pp.438-444,1995。
陳志州,「水泥混凝土添加爐石提高早期強度策略之研究」,國立中央大學土木工程研究所碩士論文,pp.9-12,1984。
陳清泉、陳振川、袁宏績與詹穎雯,「爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究」,營建研究中心,1987。
張建中,「普通水泥添加飛灰水話機理之研究」,國立台灣工業技術學院工程技術研究所營建工程技術組碩士論文,.台北,1987。
張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1992)。
張祉祥,「都市垃圾焚化底灰燒結資源化之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1999)。
黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,1986。
黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
鈴木孝與藤本忠生,「都市こみ燒卻殘渣の熔融處理」,都市清掃,第40卷,第159號,1987。
蕭炳欽,「都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1993)。
廉慧珍與童良,「建築材料物相研究基礎」,清華大學出版社,中華人民共和國,(1995)。
楊金鐘與吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.43,台北,1996。
廖錦聰,「從日本的經驗談台灣焚化灰渣資源化方向」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.29,台北,1996。
鄭文欽,「都市垃圾焚化底灰受鹽類影響重金屬釋出之研究」,淡江水資源及環境工程研究所碩士論文,1995。
謝素蘭,「以高壓及高溫燒結技術鑄造水泥、粘土及飛灰混合料組件之研究」,國立台灣工業技術學院工程技術研究所營建工程技術組碩士論文,.台北,1990。
指導教授 王鯤生(Wang Kuen-Sheng) 審核日期 2002-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明