博碩士論文 88326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.219.236.62
姓名 黃瓊慧(Chiung-Huei Huang )  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣地區大氣氣膠特性之研究-台北高雄地區單顆粒氣膠與混合相氣膠污染來源推估
(Source apportionment of particles by single particle and average bulk aerosol analysis in Taipei and Kao-hsiung area)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在邁向已開發國家之際,工業急劇發展和交通流量大增是近年來台灣工業區和都會區空氣品質惡化的主要原因,空氣品質不良(PSI>100)粒狀物仍為主要污染物(環保署,1998, 1999, 2000),如何針對污染源類別採取有效的空氣污染防制策略,已成為國內外學者研究的重點。
本研究自西元1999年12月至2000年11月以蜂巢式套管採樣器採集粒徑小於2.5mm的細粒氣膠,採樣站選定環保署台北新莊站及高雄小港站,各站每季取得10個有效樣品,共獲得台北40個、高雄41個有效樣品,以比較一年四季典型輕工業都會區及重工業都會區氣膠污染特性。採得樣品進行單顆粒氣膠分析及混合相分析(bulk analysis),單顆粒氣膠以電腦控制掃描式電子顯微鏡(CCSEM)分析,可獲得單一顆粒19種元素的強度百分比組成:C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn和Pb,並將元素組成數據以聚類分析、因子分析及絕對主成份分析推估可能污染來源。混合相分析氣膠的質量濃度、水溶性離子、OC、EC及金屬離子,所得結果除轉換成元素濃度百分比後與CCSEM分析結果進行比對,並以絕對主成份進行污染源貢獻量推估。
CCSEM元素組成數據使用統計聚類分析結果可將台北、高雄站分成約20類左右,碳平均強度佔總分析強度達74%,氧佔了12%,其他以Si(4.0%)、Al(2.5%)、S(1.7%)及Na(1.3%)較高外其餘元素皆低於1%以下,其中氣膠數較多的有6類;各類污染源中只包含純碳氧為最主要類別,台北站平均約佔35%,高雄站平均約佔40%。因子分析結果兩站都有6類主要污染來源,台北站包含:木材農廢燃燒及二次氣膠、工業污染、塵土及鍋爐燃燒,肥料、水泥及生物氣膠、鋼鐵工業等六類;高雄站6類中有五類與台北站相當,另一類則為海鹽及工業冶煉程序。將多變量統計分析推估污染來源結果與當地固定污染源排放資料做比對,證明污染來源推估結果的合理性。針對CCSEM成果,以使用聚類分析較因子分析、絕對主成份分析能具有更佳的解析度,可將污染來源解析至更細的類別。
混合相分析結果顯示,新莊地區PM2.5質量濃度以春季最高為46.6μg/m3;小港地區冬季最高為94.5μg/m3,其中又以OC、硫酸根及銨根離子為主要成份。絕對主成份污染源推估在台北站及高雄站各可獲得二個污染來源,台北站最大污染來源為二次氣膠、海水飛沫及機動車輛來源;高雄站最大污染來源為機動車輛、農廢燃燒、二次氣膠、工業排放及塵土。
整體而言,雖然單顆粒氣膠與混合相分析方法不同,但是兩種方法解析的元素含量排序大致相同,兩種分析方法可以互補不足,對於大氣氣膠污染來源推估有所助益。
摘要(英) Toward a developed country, Taiwan’s air quality is degraded by a fast development of industry and a steady increase of traffic flow. Particulate matter is still a predominant pollutant for bad air quality (PSI>100) (Taiwan EPA, 1998, 1999, 2000). An effective air pollution control strategy specific to pollution source becomes a focus point of research activities.
This study used honeycomb denuders to collect PM2.5 (particles with aerodynamic diameter smaller than 2.5mm) at Sin-chun site in Taipei County and Hsiao-kun site in Kaohsiung City from December in 1999 to November in 2000. In total, 40 samples collected in Taipei and 41 in Kaohsiung for a comparison in aerosol characteristics between a light and a heavy industrial site. Both single-particle analysis (using computer controlled scanning electron microscope, CCSEM) and bulk chemical analysis techniques were adopted for particle chemical compositions. Nineteen elements, namely C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, were identified from single particles selected randomly by CCSEM. Statistical techniques such as cluster analysis, factor analysis, and absolute principal component analysis (APCA) were applied to the elemental data from single particles to apportion their source contributions. In contrast, the chemical species of particles resolved from bulk analysis were converted into elemental composition for a comparison with CCSEM data and were apportioned their source contributions using APCA.
Among the detected elements, in terms of signal intensity, carbon is the most abundance element with an average of 74%, oxygen is second to carbon with an average of 12%, silicon is the third most abundance element with an average of 4%, those followed were aluminum 2.5%, sulfur 1.7%, and sodium 1.3%. Six of twenty source types resolved from cluster analysis were with significant particle numbers. Notably, the fraction of particle numbers for the source type with carbon and oxygen only is around 35% in Taipei and 40% in Kaohsiung, respectively. In addition, factor analysis shows that Taipei and Kaohsiung are similar in source contributions with industrial sources, sea-salt spraying, cement and fertilization production, dust and mixed burning sources, and vehicle emissions in common. The apportioned source types are consistent with sources shown in local emission inventory. In general, for elemental data from CCSEM, cluster analysis has the best resolution in source identification than factor analysis and APCA.
The bulk analysis shows spring PM2.5 at 46.6 mg/m3 is the highest among the four seasons at Sin-chun site. In contrast, the highest PM2.5 for Hsiao-kun site is at 94.5 mg/m3 for winter season. Major compositions of PM2.5 are OC, sulfate, and ammonium ion. The APCA indicates a mixed source of secondary reactions, sea-salt spraying, and motor vehicle emissions is predominant at Sin-chun site; whereas the mixed source from motor vehicle emissions, agricultural burning, secondary reactions, industrial activities, and resuspended dusts is the largest source type.
In summary, although single-particle analysis and bulk analysis are two different techniques, both methods are comparable in the rank of the resolved elemental abundance. These two methods are complimentary in source apportionment of atmospheric aerosols.
關鍵字(中) ★ 單顆微粒分析
★  大氣氣膠
★  污染來源推估
★  混合相分析
★  電腦控制掃描式電子顯微鏡
關鍵字(英) ★ atmospheric aerosols
★  source apportionment
論文目次 目錄
摘要……………………………………………….………………………….Ⅰ
目錄…………………………………………….…….………….…………….Ⅴ
圖目錄……………………………………..……………….…….………..Ⅷ
表目錄…………………………………………………………………………Ⅹ
1第一章 前言I
2第二章 文獻回顧4
2.1細粒徑氣膠對人體的危害4
2.2單顆粒氣膠微量分析(Microanalysis)5
2.3CCSEM(Computer-controlled Scanning Electron Microscopy)……………………………………………………………9
2.4單顆粒氣膠污染來源推估研究14
2.4.1聚類分析(Cluster Analysis, CA)15
2.4.2主成份分析法(Principal Component Analysis, PCA)18
2.4.3因子分析(Factor Analysis, FA)19
2.4.4絕對主成份分析(Absolute Principal Component Analysis, APCA)21
2.5混合相分析22
3三章 研究方法24
3.1採樣地點及採樣時程規劃24
3.2細微粒氣膠的採集28
3.2.1採樣器28
3.2.2使用濾紙及濾紙前處理30
3.2.3樣品的運送及保存31
3.3樣品分析31
3.3.1利用CCSEM分析單顆粒氣膠31
3.3.2氣膠化學混合相分析33
3.4數據分析36
3.4.1聚類分析36
3.4.2因子分析38
3.4.3絕對主成份分析39
4第四章 結果與討論46
4.1CCSME資料分析及污染來源推估47
4.1.1CCSEM資料分析47
4.1.2聚類分析51
4.1.3因子分析62
4.1.4絕對主成份分析70
4.2氣膠污染來源推估與驗證75
4.2.1季節性變化與污染來源推估結果75
4.2.2三種多變量統計分析方法的差異性80
4.2.3北高兩地污染來源推估結果鑑定82
4.3混合相化學分析結果及污染來源推估93
4.3.1混合相分析結果93
4.3.2絕對主成份分析及污染來源推估115
4.4CCSEM分析單顆粒氣膠與混合相分析結果比較125
4.4.1各分析元素的比較125
4.4.2污染來源推估結果比較132
5第五章 結論與建議135
參考文獻140
附錄A
附錄B
參考文獻 林美季(1992)「X-射線譜術之探討與運用」,清華大學原子科學所碩士論文。
王秋森(1997)「台北地區懸浮微粒特性及污染源之評估」,行政院環保署空氣污染防治研究發展計畫。
宋鎮宇(2000)「台灣地區大氣氣膠特性之研究-高雄及台北都會區氣膠特性與散光係數」,國立中央大學環境工程研究所碩士論文。
林平全(1989)「飛灰混凝土」,科技圖書,初版,台北,台灣。
李芝珊、林家和 (2000),「PM1/PM2.5/PM10氣懸微粒特性之探討」,第八屆氣膠科技研討會,第17-21頁。
袁中新、洪崇軒、王宏恩、劉山豪 (1999),「南台灣地區懸浮微粒物化特徵及生成機制探討」,第七屆氣膠科技研討會,第253-261頁。
陳鏡廉(1998)「台灣地區大氣氣膠特性之研究-以細微粒顯微影像推估台北都會區氣膠污染來源之研究」,國立中央大學環境工程研究所碩士論文。
蔡德明、吳義林(2000)「南高屏地區懸浮微粒中水溶性離子平衡之季節變化」,第八屆氣膠科技研討會,第146-151頁。
賴政仁(2000)「台灣地區大氣氣膠特性之研究-高雄及台北都會區單顆粒氣膠及混合氣膠特性與污染來源推估」,國立中央大學環境工程研究所碩士論文。
蘇建中、王竹方(2000)「半導體工業區空氣污染物之懸浮微粒的調查分析」,第八屆氣膠科技研討會,第135-140頁。
環境保護署(1998)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1999)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(2000)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
Anderberg, M. R., 1996b. Cluster analysis for applications, Academic Press, New York, 359.
Anderson, J R., Buseck, P. R. and Patterson, T. L., 1996. Characterization of the Bermuda tropospheric aerosol by combined individual-particle and bulk-aerosol analysis. Atomospheric Environment, 30, 319-338.
Anserson, J.R., Buseck, P. R., Saucy, D. A. and Pacyna, J. M., 1992. Characterization of individual fine-fraction particles from the arctic aerosol at Spitsbergen, May-June 1987. Atmospheric Environment, 26A, 1747-1762.
Artaxo, P., Oyola, P., and Martinez, R., 1999. Aerosol composition and apportionment in Santiago de Chile. Nuclear Instruments and Methods in Physics Research, 150, 409-416.
Bernard, P. C. and Van Grieken, R. E., 1992. Electron microprobe characterization of individual aerosol particles collected by aircraft above the southern bight of the north sea. Atmospheric Environment, 26A, 1231-1237.
Berner, A., Levin, I., Klinger, L. and Brandon, D. G., 1995. Determination of the mean size of sub micron particles by electron probe microanalysis. X-ray spectrometry, 24, 13-18.
Caridi, A., Cereda, E., Grime, G. W., Jaksic, M., Marcazzan, G. M. B., Valkovic, V. and Watt, F., 1993. Application of proton microprobe analysis to the study of electrostatic precipitation of single fly-ash particles. Nuclear Instrument & Methods in physics research section B-Beam interactions with Materials and Atoms, 77, 524-529.
Casuccio, G. S., Janocko, P. B., Lee, R. J., Kelly, J. F., Dattner, S. L. and Mgebroff, J. S., 1983. The use of computer controlled scanning electron microscopy in environmental studies. Journal of the Air Pollution control association, 33, 937-943.
Casuccio, G. S., Schwoeble, A. J., Henderson, B. C., Lee, R. J., Hopke, P. K. and Sverdrup, G. M., 1988. The use of CCSEM and microimaging to study source/receptor relationships, APCA Receptor Models in Air Resources Management Specialty Conf., San Francisco, CA. Air & waste management Association, 39-58.
Crawley, J. and Sievering, H., 1986. Factor-Analysis of the Map3S/Raine Precipitation Chemistry Network - 1976-1980. Atmospheric Environment, 20, 1001-1013.
Cullity, B. D., 1987. Elements of X-ray diffraction. Addison-wealey publighing, MA.
De Bock, L. A., Van Malerren, H. and Van Grieken, R. E., 1994. Individual aerosol particle composition variations in air masses crossing the North-Sea. Environ. Sci. Tech., 28, 1513-1520.
Deborah S. G., Markus E. G., Philip J. S., Sylvia H. W., Liu D. Y., and Kimberly A. P., 2000. Single particle characterization of automobile and diesel truck emission in the caldecott tunnel. Aerosol science and technology, 32, 152-163.
Eatough, D. J., Du, A., Joseph, J. M., Caka, F. M., Sun, B., Lewis, L., Mangleson, N. F., Eatough, M., Rees, L. B., Eatough, N. L., Farber, R. J. and Watson, J. G., 1997. Regional source profiles of sources of sox at the grand canyon during project HOHAV. Air & Waste Manage. Assoc., 47, 101-118.
Eltayeb, M. A. H., Van Grieken, R. E., Maenhaut, W. and Annegarn, H. J., 1993. Aerosol soil fractionation for Namib desert samples. Atomspheric Environment Part A-general Topics, 27, 669-678.
Galbreath, K., Zygarlicke, C., Casuccio, G., Moore, T., Gottlieb, P., Nicki, A. O., Huffman, G., Shah, A., Yang, N., Vleeskens, J. and Hamburg, G., 1996. Collaborative study of quantitative coal mineral analysis suing computer-controlled scanning electron microscopy. Fuel, 75, 424-430.
Ganor, E., Levin, Z. and Van Grieden R., 1998. Composition of individual aerosol particles above the Israelian mediterranean coast during the summer time. Atmospheric Environment, 32, 1631-1642.
Gupta et al., 1998. Computer-controlled scanning electron microscopy of minerals in coal-implication for ash deposition. Prog. Energy Combust. Sci, 24, 523-543.
Hooper, R. P., Peters, N. E., 1989. Use of multivariate analysis for determning sources of solutes foud in wet atmospheric deposition in the united States, Environ. Sci. Tech., 23, 1263-1268.
Hopke, P., 1985. Receptor modelling in Environmental Chemistry. Wiley, New York.
Huang, S., Kenneth, A. R. and Richard, A., 1999. Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island. Atmospheric Environment, 33, 2169-2185.
Injuk, J., Van Malderen, H., Van Grieken, R., Swietlicki, E., Know, J. M. and Schofield, R., 1993. Edxrs study of aerosol composition variations in air masses Crossing the North-Sea. X-ray spectrometry, 22, 220-228.
Jamebers, W., De Bock, L. and Van Grieken, R., 1996a. Applications of micro-analysis to individual environmental particles. Fresenius J. Anal Chem., 355, 521-527.
Jamebers, W., De Bock, L. and Van Grieken, R., 1996b. Present and future applications of beam techniques in environmental microanalysis. Trends in analysis chemistry, 15, 114-122.
Jamebers, W. and Van Grieken, R., 1997. Single particle characterization of inorganic suspension in Lake Baikal, Siberia. Environ. Sci. Tech., 1525-1533.
Johnson, R. L., Shah, J. J., Cary R. A. and Huntzicker, J. J., 1981. An automated thermal-optical method for the analysis of carbonaceous aerosol, in Atmosphere aerosol : Source/Air quality Relationships, American Chemical Society, 167.
Katrinak, K. A., Anderson, J. R. and Buseck, P. R., 1995. Individual particle types in the aerosol of phoenix, Arizona. Environ. Sci. Tech.,. 29, 321-329.
Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M., Mulk, J. D. and Burton, R. M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environ. Sci. Tech., 27, 2497-2501.
Lin, J. J., and Tai, H. S., 2001. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmospheric Environment, 35, 2627-2636.
Mamane, Y. and DePena, R. G., 1988. A quantitative method for the detection of individual submicrometer size sulfate particles. Atmospheric Environment, 12, 69-82.
2001. scanning electron microscopy applied to an ambient urban aerosol sample. Aerosol Science and Technology, 34, 97-107.
Aerosol Science and Technology, 34, 108-117.
Orlic, I., Wen, X., Ng, T. H. and Tang, S. M., 1999. 2 years of aerosol pollution monitoring in Singapore. A review, Nuclear Instrument & Methods in physics research section B-Beam interactions with Materials and Atoms., 150, 457-464.
Pacyna, J., 1984. Estimation of atmospheric emissions of trance elements form anthropogenic sources in Europe. Atomspheric Environment, 18, 41-50.
Prather, K. A., Nordmeyer, T. and Salt, K., 1994. Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry, Anal. Chem., 66, 1403-1407,
Robert A. M., and Michael T. K., 2000. Incidence and apparent health significance of brief airborne particle excursions. Aerosol Sci. & Technol., 32, 93-105.
Rojas, C. M., Artaxo, P. and Greken, R. V., 1990. Aerosols in Santiago De chile: Astudy using receptor modeling with x-ray fluorescence and single particle analysis. Atmospheric Environment, 24B, 227-241.
Rojas, C. M. and Van Grieken, R. E., 1992. Electron microprobe characterization of individual aerosol particles collected by aircraft above the southern bight of the North Sea, Atmospheric Environment, 26A, 1231-1237.
Schwoeble, A. J., Dalley, A. M., Henderson, B. C. and Casuccio, G. S., 1988. Computer-controlled SEM and microimaging of fine particles. Journal of Metals, 10-14.
Schwoeble, A. J., Lentz, H. P., Mershon, W. J. and Casuccio, G. S., 1990. Microimaging and off-line microscopy of fine particles and inclusions. Materials Science and Engineering, A124, 49-54.
Sioutas, C., Wang, P. Y., Ferguson, S. T., Koutrakis, P. and Mulik, J. D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment, 30, 885-895.
Sitzmann, B., Kendall, M., Watt, J., Williams, I., 1999. Characterisation of airborne particles in London by computer-controlled scanning electron microscopy. The Science of the Total Environment, 241, 63-73.
Swietlicki, E. and Krejci, R., 1996. Source characterisation of the central European atmospheric aerosol using multivariate statistical methods. Nuclear Instruments and Methods in Physics Res., 519-525.
Thurston, G. D. and Spengler, J. D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment, 19, 9-25.
Tourmann, J. L. and Kaufmann, R., 1993. Laser microprobe mass-spectrometry (lamms) of coal-mine Ddsts - sngle-prticle anaysis and toxicity correlation. International Journal of Environmental Analytical Chemistry, 52, 215-227.
Tuch, A. M., Tamm E. J., Heyder, H. P., Brand, C. H., Roth, H. E., Wichmann, J. P., Kreyling W.G., 2000. Comparison of two partical-size spectrometers for ambient aerosol measurements. Atmospheric Environment, 34, 139-149.
Turpin, B. J., and Huntzicker, J. J., 1991 Sencdary formation of organic aerosol in the Los Angeles basin : a descriptive analysis of organic and elementalcarbon concentrations . Atmospheric Environment, 25A, 207-215.
U.S. Environmental Protection Agency, 1997a. Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17.
U.S. Environmental Protection Agency, 1997b. Nation Ambient Air Quality standards for Particulate Matter; Availability of Supplemental Information and Request for Comments Final Rule, 40 CFR part 50, Federal Register, 62(138): 38761-38762, July 18.
U.S. Environmental Protection Agency, 1998. Guideline on Speciated Particulate Monitoring, prepared by J. C. Chow, et al., Desert Research Institute, NV, for N. Frank, et al., US EPA, OAQPS RPT.
Van Borm W. A. and Adams, F. C., 1988. Cluster analysis of electron microprobe analysis data of individual particles for source apportionment of air particulate matter. Atmospheric Environment, 22, 2297-2307.
Van Malderen, H., Hoornaert, S. and Van Grieken, R., 1996. Identification of individual aerosol particles containing Cr, Pb and Zn above the North sea. Environ. Sci. Tech., 30, 489-498.
Van Malderen, H., Rojas, C. and Rrieken, R., 1992. Characterization of individual giant aerosol particle above the North Sea. Environ. Sci. Tech., 26, 750-756.
Van Malderen, H., Van Grieken, R., Bufetov, N. V. and Koutzenogii, K. P., 1996a. Chemical characterization of individual aerosol particles in central Siberia. Environ. Sci. Tech., 30, 312-320.
Van Malderen, H., Van Grieken, R. and Khodzher, T., 1996b. Composition of individual aerosol particles above Lake Baikal, Siberia. Atmospheric Environment, 30, 1453-1465.
Wang, C. S., 1999. Areview of current studies on fine particles in ambient aerosols in Taiwan. Workshop on Recent Research and Development of PM2.5, Taipei, Taiwan.
Ward, J. H., 1963. Hierarchical grouping to optimize an objective function. Journal of American Statistic Associ., 58, 236-244.
Wigley et al., 1997. The distribution of mineral matter in pulverised coal particles in elation to burnout behaviour. Fuel, 13, 1283-1288.
Wolff, G. T., Ruthkosky, M. S., Stroup, D. P., Morrissey, M. L. and Korsog, P. E., 1985. The Influence of Local and Regional Sources on the Concentration of Inhalable Particulate Matter in Southeastern Michigan, Atmospheric Environemnt, 19, 305-313.
Wouters, L., Hagedoren, S., Dierck, I., Artaxo, P. and Van Grieken, R., 1993. Laser microprobe mass analysis of Amazon basin aerosols. Atomspheric Environment, 27A, 661-668.
Xhoffer, C., Bernard, P., Grieken, R.V. and Auwera, L. V., 1991. Chemical characterization and source apportionment of individual aerosol particles over the North Sea and the English Channel using multivariate techniques. Environ. Sci. Tech., 25, 1470-1478.
Zheng, B., Sage, M., Cai, W.W., Thompson, D.M., Tavsanli, B.C., Cheah, Y.C., Bradley, A., 1999. Engineering a mouse balancer chromosome. Nat Genet., 22(4), 375-378.
Zou, L. Y. and Hooper, M. A., 1997. Size-resolved airborne particles and their morophology in central Jakarta, Atmospheric Environment, 31, 1167-1172.
指導教授 李崇德(Chung-Te Lee) 審核日期 2001-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明