博碩士論文 88326003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.117.92.86
姓名 王證權(Cheng- Chuan Wang )  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 亞洲氣膠特性實驗—台灣北海岸春季氣膠化學特性
(Asia aerosol characterization experiment--Chemical characterization of atmospheric aerosols in North Beach, Taiwan in spring)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中國沙塵暴對於東亞地區輻射的平衡、氣候的改變、能見度的衰竭、人類的健康以及生態系統的平衡有相當顯著的影響(Chung et al., 1996)。本研究於2001年3月到5月之間配合環太平洋主要國家對沙塵暴的監測,在台北縣石門鄉進行密集性的PM2.5及PM10氣膠採樣,並進行氣膠質量濃度、氣膠水溶性離子、碳成分、氣膠元素等氣膠成份的分析。
結果顯示台灣北海岸氣膠化學特性在沙塵暴與平常日有所差異,沙塵暴時期PM2.5、PM10及PM10-2.5氣膠平均質量濃度分別為43.7、124.4及80.8 μg/m3;平常日的PM2.5、PM10及PM10-2.5氣膠平均質量濃度則分別為26.0、50.6及24.5 μg/m3。這個結果展現沙塵暴時期主要是以PM10-2.5粗粒徑氣膠為主,其質量濃度為平常日的3.3倍。此外,沙塵暴時期較平常日凸顯的成分有水溶性離子的 , 以及Ca、Fe、Si三種元素;沙塵暴時期的OC/EC介於1.5?2.29低於平常日的3.26?3.30,而且沙塵暴時期的 佔PM10及PM2.5氣膠質量濃度百分比均較平常時期為低,顯示沙塵暴會影響二次氣膠光化反應的生成。
在確認氣膠化學組成分析的準確性,利用質量重建方法可將PM10及PM2.5分析的化學成分回復到化合物的狀態,使得可解析百分比提升到79.3%及94%。從氯離子損失法的計算,我們發現61.8% PM2.5氣膠是二次硫酸鹽;至於PM10氣膠則有38.5%的二次硫酸鹽及27.6%的海鹽氣膠。絕對主成份的分析指出,PM2.5氣膠的最主要來源為人類活動、交通污染及二次光化反應混合的污染源,貢獻質量濃度達65.5%;而PM10氣膠的最主要來源則為海水飛沫、塵土來源、農廢燃燒以及部分的二次光化反應的混合污染源,貢獻其質量濃度的61.7%。氯離子損失法與絕對主成份法推估的一致性,確認了本研究對氣膠污染來源推估的結果。
摘要(英) China dust storms play a significant role in the radiation budget, climate change, visibility degradation, health effects, and the equilibrium of ecosystems in East Asia (Chung et al., 1996). In collaboration with the major countries of Pacific Rim on the monitoring of China outflow, this study collects PM2.5 and PM10 at Shi-Men in Taipei County from March to May in 2001. Aerosol mass concentration, water-soluble ions, carbonaceous content, and elemental content were resolved from the collected filters.
The results demonstrate a contrast of aerosol chemical properties between dust storm events and normal days in the Taiwan northern coast. During dust storm events, the average mass from PM2.5, PM10, and PM10-2.5 was 43.7, 124.4, and 80.8 μg/m3, respectively. In contrast, that of PM2.5, PM10, and PM10-2.5 was 26.0, 50.6, and 24.5 μg/m3, respectively. It shows that PM10-2.5 dominated PM10 fraction with more than triple fold in the dust events as compared to normal days. In addition, the concentrated species in the dust storm events were Ca2+, Ca, Fe, and Si. For the ratio of organic carbon to elemental carbon (OC/EC), the values in the dust storm events ranged between 1.5~2.29 that were smaller than 3.26~3.30 in the normal days. More, the fraction of SO42- in PM10 and PM2.5 during the events was found smaller than that of normal days. This result implies the hindrance of dust storms on the formation of secondary aerosols.
In validating the analytical accuracy on aerosol composition, a method of reconstructed mass was adopted to convert aerosol species into aerosol compounds. The method increased the resolved mass fraction PM2.5 and PM10 to a value of 79.3 and 94%, respectively. From the calculation of chlorine loss, we found 61.8% of PM2.5 is secondary sulfate, whereas 38.5 and 27.6% of PM10 is secondary sulfate and sea-salt aerosol, respectively. Meanwhile, the absolute principal component analysis shows the most significant source of PM2.5 contributed 65.5% of mass concentration, which is a source mixed with anthropogenic activity, vehicle emission, and secondary reactions. In contrast, sea-salt spraying, resuspended dusts, agricultural burning, and part of the secondary reactions contributed 61.7% of PM10. The consistency between chlorine loss and absolute principal component methods confirms the results of aerosol source apportionment in this study.
關鍵字(中) ★ 氣膠污染源推估
★  氯離子損失法
★  沙塵暴
★  絕對主成份分析
★  重建質量濃度
關鍵字(英) ★ chlorine loss
★  dust storm
★  reconstructed mass
論文目次 摘要I
AbstractIII
1.第一章 前言1
1.1研究動機1
1.2研究目的3
2.第二章 文獻回顧4
2.1氣膠的分類、來源、化學特性及對人體的危害性4
2.1.1氣膠的分類、來源與粒徑分佈4
2.1.2氣膠的化學組成與濃度6
2.1.3氣膠質量濃度7
2.1.4氣膠碳元素8
2.1.4氣膠含水量9
2.1.5氣膠對人體的危害性11
2.2海岸地區氣膠特性12
2.2.1海岸地區氣膠的組成與來源12
2.2.2非海鹽硫酸鹽氣膠12
2.2.3硝酸鹽氣膠14
2.2.4海鹽氣膠14
2.2.5海岸地區氣膠的化學特性15
2.3東亞沙塵暴期物化特徵17
2.3.1東亞沙塵暴發生源及氣候條件17
2.3.2東亞黃沙現象的影響17
2.3.3東亞沙塵暴特徵18
2.4能見度、散光係數與化學組成間的相關性19
2.4.1氣膠微粒的多元線性迴歸消光模式20
2.4.2化學物種散光效率22
2.5受體模式的污染源推估方法24
2.5.1 CMB化學質量平衡模式24
2.5.2因子分析(Factor Analysis, FA)27
2.5.3主成分分析( Principal Component Analysis, PCA)27
2.5.4絕對主成分分析(Absolute Principal Component Analysis)30
2.5.5多元線性迴歸分析(Multiple Linear Regression Analysis)30
3.第三章 研究方法32
3.1採樣觀測點地理環境描述及採樣時間34
3.2採樣量測儀器37
3.2.1 R&P Partisol Model 2300 Speciation Sampler37
3.2.2 R&P 2000 FRM Sampler41
3.2.3 δ-IAS 採樣器43
3.2.4 R&P TEOM 1400a型PM10監測儀44
3.3採樣觀測方法與標準操作程序48
3.3.1採樣觀測方法48
3.3.2採樣濾紙的前處理52
3.3.3 R&P 2300 Model採樣器標準操作程序53
3.3.4 R&P 2000-FRM採樣器標準操作程序55
3.3.5 δ-IAS採樣器標準操作程序55
3.3.6 R&P TEOM 1400a型PM10監測儀標準操作程序57
3.3.7樣品的保存方法與時間59
3.4分析方法60
3.4.1氣膠質量秤重分析60
3.4.2氣膠水溶性離子分析方法60
3.4.3氣膠碳元素分析方法62
3.4.4氣膠元素分析方法64
3.4.5氣膠含水量推估66
3.5氣膠污染來源與貢獻量推估68
3.5.1加強因子法68
3.5.2氯離子損失法69
3.5.3絕對主成份分析72
4.第四章 結果與討論79
4.1 PM10氣膠化學特性與組成84
4.1.1 PM10氣膠質量濃度特性84
4.1.2 PM10氣膠元素特性91
4.1.3 PM10氣膠碳元素特性98
4.1.4 PM10氣膠水溶性離子特性與陰陽離子平衡104
4.1.5 PM10氣膠理論含水量111
4.1.6 PM10氣膠化學組成百分比113
4.1.7 RCMA(Reconstructed Mass)與GMMA(Gravimetric Mass)之間的相關性115
4.2 PM2.5氣膠化學特性與組成119
4.2.1 PM2.5氣膠質量濃度特性119
4.2.2 PM2.5氣膠元素特性123
4.2.3 PM2.5氣膠碳元素特徵130
4.2.4 PM2.5氣膠水溶性離子特性與陰陽離子平衡139
4.2.5 PM2.5氣膠理論含水量特性152
4.2.6 PM2.5氣膠化學組成百分比154
4.2.7 RCMA(Reconstructed Mass)與GMMA(Gravimetric Mass)之間的相關性157
4.3 沙塵暴時期PM2.5、PM10-2.5及PM10氣膠化學特性之探討161
4.3.1 沙塵暴時期的氣膠質量濃度特性探討161
4.3.2 沙塵暴時期的氣膠元素特性探討166
4.3.3 沙塵暴時期的氣膠碳元素特性探討183
4.3.4 沙塵暴時期的氣膠水溶性離子特性探討189
4.3.5由後推氣流軌跡探討沙塵暴時期特性194
4.3.6沙塵暴時期的化學組成探討201
4.3.7沙塵暴時期特性總結208
4.4氣膠化學特性與散光係數的相關性209
4.4.1 氣膠質量濃度及化學組成與散光係數的相關性209
4.4.2氣膠質量濃度與散光係數的相性210
4.4.3氣膠化學組成與散光係數的相關性211
4.5 PM2.5細粒徑與PM10氣膠污染來源推估213
4.5.1 MEF海水加強因子法(marine enrichment factor)213
4.5.2 CL氯離子損失法(Chlorine loss method)229
4.5.3 APCA絕對主成份分析(Absolute principal components Analysis)240
4.5.4 污染源推估方法之比較255
4.5.5 PM10、PM2.5污染來源之比較258
5.第五章 結論與建議260
5.1 結論260
5.2建議262
6.參考文獻263
參考文獻 許文昌, 1997. 微粒含水量直接量測技術之研究. 國立中央大學土木工程研究所博士論文.
王弼正, 1997. 台灣地區大氣氣膠特性之研究-東北季風影響下台北地區細微粒及其氣體前驅物特性之研究. 國立中央大學環境工程研究所碩士論文.
謝佩憶, 1999. 台灣地區大氣氣膠特性之研究-墾丁氣膠組成及含水率對散光係數的影響及污染來源推估. 國立中央大學環境工程研究所碩士論文.
王俊凱, 2000. 台灣地區大氣氣膠特性之研究-高雄、台北都會區氣膠特性與污染來源推估. 國立中央大學環境工程研究所碩士論文.
Ackermann-Librich, U., Leuenberger, Ph., Schwartz, J., Schindler, Ch., SAPALDIA-term, 1997. Lung function and long term exposure to air pollutants in Switzerland. Journal of Respiratory and Critical Care Medicine 155, 122-129.
Ames, R.A., Hand, J.L., Kreidenweis, S.M., Day, D.E., Malm, W.C., 2000. Optical measurement of aerosol size distributions in Great Smokey Mountains national park: Dry aerosol characterization. J. Air & Waste Manage. Assoc. 50, 665-676.
Appel, B.R., Tokiwa, Y., Hsu, J., Kothny, E.L., Hahn, E., 1985. Visibility as related to atmospheric aerosol constituents. Atmospheric Environment 9, 1525.
Ball, J., Willie, C., Young, C., 1992. Evidence of a new class of mutagenes in diesel particulate extracts. Environmental Science and Technology 26, 2181-2186.
Cadle, S.H., Dash, J.M., 1988. Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in Northern Michigan. Atmospheric Environment 22, 1373-1381.
Carmichael, G.R., Zhang, Y., Chen, L.-L., Hong, M.-S., Ueda, H., 1995. Seasonal variation of aerosol composition at Cheju Island, Korea. Atmospheric Environment 30, 2407-2416.
Cass, G.R., 1979. On the relationship between sulphate air quality and visibility with examples in Los Angeles. Atmospheric Environment 13, 1069-1084.
Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment 33, 2771-2781.
Chan, Y.C., Simpson, R.W., McTainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane. Australia. Atmospheric Environment 31, 3773-3785.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Environment 33, 3237-3250.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1999. Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modelling. Atmospheric Environment 33, 3251-3268.
Chang, S.G., Brodzinsky, R., Gundel, L.A., Novakov, T., 1982. Chemical and catalytic properties of elemental carbon. In: Wolff, G.T., Klimisch, R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum Press, New York, pp. 158-181.
Chung, Y.S., 1986. Air pollution detection by satellite: the transport and deposition of air pollutants over oceans. Atmospheric Environment 20, 617-630.
Chung, Y.S., 1992. On the observations of yellow sand (dust storms) in Korea. Atmospheric Environment 26A, 2743-2749.
Chung, Y.S. and Yoon, M.B., 1996. On the occurrence of yellow sand and atmospheric loadings. Atmospheric Environment 30, 2387-2397.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chow, J.C., Watson, J.G., Fujuta, E.M., Lu, Z., Lawson, D.R., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air quality study. Atmospheric Environment 28, 2061-2080.
Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuiller, R.H., Magliano, K., 1996. Descriptive analysis of PM2.5 and PM10 at regionally respresentative locations during SJVAQS/AUSPEX. Atmospheric Environment 30, 2079-2112.
Countess, R.J., Wolff, G.T., Cadle, S.H., 1980. The Denver winter aerosol: a comprehensive chemical characterization, Journal of the Air Pollution Control Association 30, 1194-1200.
Daisey, J.M., Cheney, J.L., Lioy, P.J., 1986. Profiles of organic particulate emissions from air pollution sources: status and needs for receptor source apportionment modeling. Journal of the Air Pollution Control Association 36, 17-33.
Dockery, D.W., Pope, C.A., Xu, X., Sprengler, I.D., 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329, 1573-1579.
Draxler, R.R., 1999. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT): Version 4.0- User's Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Silver Spring, MD, USA.
Dzubay, T.G., Stevens, R.K. and Lewis, C.W., 1982. Visibility and aerosol composition in Huston, Texas. Environmental Science and Technology 25A, 514-524.
Fung, K., 1990. Particulate carbon speciation by MnO2 oxidation. Aerosol Science and Technology 12, 122-127.
Fung, K., Chow, J.C. and Watson, J.G., 2001. Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the improve method.
Gao, Y., Arimoto, R., Duce, R.A., Lee, D.S., Zhou, M.Y., 1992a. Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year. Journal of Geophysical Research 97D, 3767-3777.
Gao, Y., Arimoto, R., Zhou, M.Y., Merrill, J.T., Duce, R.A., 1992b. Relationships between the dust concentration over Eastern Asia and the remote North Pacific. Journal of Geophysical Research 97D, 9867-9872.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Groblicki, P.J., Wolff, G.T., Countess, R.J., 1981. Visibility reducing species in the Denver ‘brown cloud’-I. Relationships between extinction and chemical composition. Atmospheric Environment 15, 2473-2484.
Grosjean, D., 1984. Particulate carbon in the Los Angeles air. Science of the Total Environment 32, 133-145.
Handbook of Chemistry and Physics, 1963. The Chemical Rubber Co., Cleveland, OH.
Hara, H., 1993. Monitoring of acid deposition in Japan. In Proc. of the Expert Metting of Acid Precipitation Monitoring Network in East Asia, Toyama, Japan.
Harrison, R.M., Pio, C.A., 1983. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmospheric Environment 17, 1733-1783.
Heinrich, U., Dungworth, L., 1991. The carcinogenic effects of carbon black particles and tar/pitch condensation aerosols after inhalation exposure of rates. Seventh International Symposium on Inhaled Particles, Edinburgh.
Henry, R.C., Kim, B.M., 1990. Extension of self-modeling curve resolution to mixtures of more than three components: Part 1. Finding the basic feasible region. Chemomestrics and Intelligent Laboratory Systems 8, 205-216.
Hildemann, L.M., Markowski, G.R.,Cass, G.R., 1991. Chemical composition of emissions from urban sources of fine organic aerosol. Environmental Science and Technology 25, 744-759.
Hodkinson, R.J., 1966. Calculations of colour and visibility in urban atmospheres polluted by gaseous NO2 . International Journal of Air and Water Pollution 10, 137-144.
Hopper, R,P. and Peters, N.E., 1989. Use of multivariate analysis for determining sources of solutes found in wet atmospheric deposition in the United States. Environment Science and Technology 23, 1263-1268.
Horvath, H., Kasahara, M. and Pesava, P., 1996. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. Journal of Aerosol Science 27, 417-435.
Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., Griest, W.H. and MacDougall, C.S., 1986. Carbonaceous aerosol in the Ohio River Valley. Journal of Air Pollution Control Association 36, 705-709.
Iwasaka, Y., Yamato, M., Iamasu, R., Ono, A., 1988. Transport of Asian dust (Kosa) particles; importance of weak kosa events on the geochemical cycle of soil particles. Tellus 40B, 494-503.
Japar, S.M., Brachaczek, W.W., Gorse, R.A., Norbeck, J.M., Pierson, W.R., 1986. The contribution of elemental carbon to the optical properties of rural atmospheric aerosols. Atmospheric Environment 20, 1281-1289.
Jolliffe, I.T., 1986. Principal Component Analysis. Springer, New York.
Kerminen, V.M., Pakkanen, T.A., Hillamo, R.E., 1997. Interactions between inorganic trace gases and supermicrometer particles at a coastal site. Atmospheric Environment 31, 2753-2765.
Kim, B.M., 1989. Development of a new multivariate receptor model and its application to Los Angeles airborne particle data. Ph.D. Dissertation. University of Southern California, Los Angeles, CA.
Kim, B.M., Henry, R.C., 1999. Extension of self-modeling curve resolution to mixtures of more than three components: Part 2. Finding the complete solution. Chemomestrics and Intelligent Laboratory Systems 49, 61-77.
Kim, H.K. and Shin, E.S., 1991. Influence of yellow sand on TSP in Seoul. In Emerging Issues in Asia, Proc. 2nd IUAPAA Regional Conference on Air Pollution, Seoul, Korea, Vol. Ⅱ, 1-7.
Kim, Y.P., Moon, K.-C., Lee, J.H., 2000. Organic and element carbon in fine particles at Kosan,Korea. Atmospheric Environment 34, 3309-3317.
Kim, Y.P., Moon, K.-C., Shim, S.-G., Lee, J.H., Fung, K., Carmichael, G.R., Song, C.H., Kang, C.H., Kim, H.-K., Lee, C.B., 2000. Carbonaceous species in fine particles at the background sites in Korea between 1994 and 1999. Atmospheric Environment 34, 5053-5060.
Koschmieder, H., 1925. Theorie der horizontalen sichtweite II: kontrast und sichtweite beitrage zur physik der freien. Atmosphere 12, 171-181.
Kotamarthi, V.R. and Carmichael, G.R., 1993. A modeling study of the long range transport of Kosa using particle trajectory analysis. Tellus 45B, 426-441.
Kuhlbusch, T.A.J., Hertlein, A.-M. and Schutz, L.W., 1998. Sources, dertermination, monitering, and transport of carbonaceous aerosols in Mainz, Germany. Atmospheric Envrionment 32, 1097-1110.
Laenderausschuss Immissionsschutz, 1992. Cancer risk caused by air pollution. Ministerium fuer Umwelt und Landwirtschaft des Landes Nordrhein-Westfalen, Duesseldorf.
Lavanchy, V.M.H., Gaggeler, H.W., Nyeki, S., Baltensperger, U., 1999. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmospheric Environment 33, 2759-2769.
Lee, H.S., Kang, B.W., 1999. Characteristics of organic to elemental carbon ratios in fine particules Proceedings of the Korean Society for Atmospheric Environment, Yong-in, Korea, 24-26 .
Malm, W.C., Gebhart, K.A., Molnar, J., Cahill, T., Eldred, R., Huffmann, D., 1994. Examining the relationship between atmospheric aerosols and ligh extinction at Mount Rainier and North Cascades National Parks. Atmospheric Environment 28, 347-360.
McInnes, L.M., Covert, D.S., Quinn, P.K., Germani, M.S., 1994. Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research 99, 8257-8268.
Molnar, A., Meszaros, E., Hansson, H.C., Karlsson, H., Gelenser, A., Kiss, G.Y., Krivacsy, Z., 1999. The importance of organic and elemental carbon in the fine atmosphere aerosol partcles. Atmospheric Environment 33, 2745-2750.
Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123-152.
Nishikawa, M., Kanamori, N., Mizoguchi, T., 1991. Kosa aerosol as eolian carrier of anthropogenic material. In The Science of the Total Environment 107, 13-27.
Novakov, T., 1982. Soot in the atmosphere. In: Wolff, G.T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, pp. 19-41.
Ohta, S., Hori, M., Yamagata, S., Murao, N., 1998. Chemical characterization of atmospheric fine particles in Sapporo with determination of water content. Atmospheric Environment 32, 1021-1025.
Pakkanen, T.A., Kerminen, V.M., Hillamo, R.E., Makinen, M., Makela, T., Virkkula, A., 1996. Distribution of nitrate over sea-salt and soil derived particles-implication from a field study. Journal of Atmospheric Chemistry 24, 189-205.
Park, S.S., Kim, Y.J., Fung, K., 2001. Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea. Atmospheric Environment 35, 657-665.
Peundorf, R., 1957. Tables of the refractive index for standard and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 microns and their application to atmospheric optics. Journal of the Optical Society of America 47, 176-182
Puxbaum, H., Wopenka, B., 1984. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria. Atmospheric Environment 18, 573-580.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Schwartz, J., 1994. Particulate air pollution and chronnic respiratory disease. Environmental Research 62, 7-13.
Seaton, A., MacNee, W., Donaldson, K., Godden, D., 1995. Particulate air pollution and acute health effects. Lancet 345, 176-178.
Sloane, C.S., White, W.H., 1986. Visibility: an evolving issue. Environmental Science and Technology 20, 760-766.
Shah, J.J., Johnson, R.L., Heyerdahl, E.K., Huntzicker, J.J., 1986. Carbonaceous aerosol at urban and rural sites in the United States. Journal of the Air Pollution Control Association 36, 254-257.
Thurston, G.D. and Spengler, J.D., 1985. A quantitative assessment of source contribution to inhalable particle matter pollution in metropolitan Boston. Atmosphere Environment 19, 9-25.
Turnbull, A.B., Harrison, R.M., 2000. Major component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137.
Turpin, B.J., Cary, R.A., Huntzicker, J.J., 1990. An in-situ, time-resolved analyzed for aerosol organic and elemental carbon. Aereosol Science and Technology 12, 161-171.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Saxena, P., Allen, G., Koutrakis, P., McMurry, P., Hildemann, L., 1997. Characterization of the southwest Desert aerosol, Meadview, AZ. Journal of the Air and Waste Management Association 47, 344-356.
Valaoras, G., Huntzicker, J.J., White, W.H., 1988. On the contribution of motor vehicles to the Athenian “Nephos”; an application of factor signitres. Atmpspheric Environment 22, 965-971.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Wolff, G.T., 1984. On the nature of nitrate in coarse continential aerosols. Atmospheric Environment 18, 977-981.
Wolff, D.K., Monahan, E.C. and Spiel, D.E., 1988. Quantification of the marine aerosol produced by Whitecaps, Preprint, Seventh Conference on Ocean-Atmosphere Interaction. American Meteorology Society, 182-185.
Wu, P.M., Okada,K., 1994. Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmospheric Environment 28, 2053-2060.
Zhang, X.Y., Arimoto, R., An, Z.S., 1997. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research 23, 28041-28047.
Zhung, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
指導教授 李崇德(Chung-Te Lee) 審核日期 2001-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明