博碩士論文 88326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.149.29.224
姓名 林炅勳(kuei-Hsun Lin )  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多段式生物濾床併同去除碳、氮、磷之研究
(Multiple-Biofilter simultaneous removal on organic-carbon, TN &TP)
相關論文
★ 變動負荷特性與殘留基質對缺氧釋磷攝磷現象之探討★ 重力式下水道中溶氧傳輸及水質轉化之研究
★ AOAO污水處理程序去除營養鹽之特性研究★ 生物擔體渠道淨化二級生物處理放流水氮化物之特性探討
★ 浸水式生物濾床處理污水營養物質之研究★ 併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究
★ 下水道系統生化動力模式建立之研究★ 應用分子生物技術進行生物處理程序菌相分析之研究
★ MBR除氮系統特性之研究★ 多段進流去氮除磷系統動態處理特性之研究
★ 多段進流去氮除磷系統穩動態處理及 控制特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 固定生物膜系統之技術日益精進,對於碳、氮、磷之併同去除,在活性污泥法除氮、除磷代謝機制之基礎上,研究其可行性,將對未來實廠應用上應有發展之潛力。本研究係針對生物膜法中生物濾床之程序及原理,建立三段串聯式生物濾床系統,研究探討併同去除碳、氮、磷之可行性與濾床特性。
在交替曝氣循環的培養下,進流端會有很高的COD殘留至好氧狀態,容易造成好氧異營菌的大量生長,使得PAO與脫(亞)硝異營菌較無法發揮其活性,隨著在中後端COD負荷低,好氧異營菌比例較低,PAO與脫(亞)硝菌等異營菌才會佔一定的比例,待COD負荷更低時,硝化自營菌等生長速率更慢的微生物才會生長。
本研究分反應循環時間為1、3、6、12、18 hrs共五個試程,循環時間=1、18 hrs試程釋磷、攝磷活性不佳,且循環時間=18 hrs之亞硝化作用亦較不顯著,因此可知併同將氮、磷去除的效率偏低。在循環時間=12 hrs試程下,雖然有顯著的亞硝酸氮累積,但硝化作用受限制,且脫亞硝作用不足以將所有氮去除,對於將氮更有效去除仍不可行,且PAO活性偏低,對於除磷亦無顯著的效率。而循環時間=6 hrs試程,具有較佳的釋磷與攝磷活性,但並無顯著的亞硝化作用,針對併同去除氮、磷而言,存在衝突性,只能將磷較有效之去除,而除氮效率卻不佳。循環時間=3 hrs試程, 相對於其他循環時間試程,有最佳之釋磷與攝磷活性,且更有將亞硝酸氮進一步氧化成硝酸氮的硝化作用存在,故此試程對氮、磷併同去除,在實廠工程應用上將較為可行。
隨著循環時間之增加,硝化速率有遞減之趨勢,顯示循環時間增加,高COD負荷殘留至好氧狀態,促使硝化自營菌所佔比例愈低。且硝化速率集中在濾床中後端,在濾床中後端COD負荷較低有較高之活性。脫亞硝速率或脫硝速率在濾床中後端明顯較高,顯示進流端好氧異營菌為優勢菌種,脫亞硝菌、脫硝菌則偏重在濾床中後端生長。
除磷效率之高低取決於釋磷活性之大小。循環時間=3、6 hrs試程於濾床中後端明顯釋磷速率較高,反應出攝磷速率亦較高。循環時間=1 hr試程厭氧時間不足以PAO釋出聚磷酸鹽,而循環時間=12、18 hrs試程有過高殘留COD促使好氧異營菌增殖,促使PAO所佔比例較低,而釋磷作用並不顯著,造成除磷效率偏低。
SPRR、SPRM、SPUR隨著循環時間變化有相似之趨勢,顯示厭氧批次實驗下有較佳之SPRR與SPRM,將反映在好氧批次實驗之SPUR亦明顯較高,更驗證厭氧環境釋磷活性較高,好氧環境攝磷活性亦較高之生物除磷原理。
摘要(英) The attached biofilm systems on simultaneously removing organic carbons, total nitrogen, total phosphates are based on activated sludge process, with investigation in progress of decades, that are available to apply in pilot-plant scale. This study of setting up a three-stage submerged biofilter is investigated the feature of removing nutrients.
Because of residual COD in the initial zone of the biofilter, aerobic heterotrophs tend to overgrow in the zone. With the height of the biofilter being higher, the COD loading lower, PAOs and denitrifying bacteria would bring into the better activity.
This study involves five cycle duration (CD) runs — 1,3,6,12,18 hours. The run of CD = 1 hr alternative aeration is frequent, then resulting in poor activity of phosphorus release. CD = 12,18 hrs, COD loading lasts accumulating in all zones of the biofilter and causes inactive PAOs. CD = 3,6 hrs, sufficient anaerobic time and lower COD loading would result in increasing phosphorus release and accumulation of PHAs. Hence, TP removal efficiency is dependent on anaerobic phosphorus release. In TN removal, nitritation is specific reaction in the biofilter, but complete nitrification isn’t predominant. Denitritation is then forced to play an important role on TN removal. In general, TN removal efficiency is poorer in this study. The run of CD = 3 hrs has more complete nitrification than other ones, and that would be more practicable on simultaneous TN & TP removal.
With CD increasing, nitrification rate has a tendency to decrease. Nitrifying bacteria distributed in the middle to upper zones that are lower COD loading, these microorganisms would have better performance. Denitrification rate is also higher in the zones.
TP removal efficiency depends on activity of phosphorus release. The better activity of phosphorus release is in anaerobic phase, the more excess uptake of phosphorus is in aerobic phase. Hence, TP removal efficiency is increasing. The runs of CD = 3,6 hrs are better performing examples of this study. SPRR, SPRM, SPUR have the similar trend accompanied with time. Batch experiment revealed that the better are SPRR and SPRM, the better is SPUR.
關鍵字(中) ★ 三段串聯式生物濾床
★  亞消化作用
★  循環時間
★  濾床高度
★  釋磷/攝磷作用
關鍵字(英) ★ duration
★  three-stage biofilter
論文目次 第 一 章 緒論1
1.1 研究緣起1
1.2 研究目的與內容2
1.3 研究架構3
第 二 章 文獻回顧4
2.1 生物膜之基本原理與機制4
2.1.1 生物膜擴散機制4
2.1.2 生物膜組織構造6
2.1.3 生物濾床操作程序及原理9
2.2 生物濾床除氮之原理與程序13
2.2.1 生物濾床之硝化機制14
2.2.2 生物濾床之脫硝機制17
2.3 生物濾床去除總磷原理與程序23
2.3.1 生物除磷之代謝機制23
2.3.2 除磷生物濾床之作用及原理27
2.3.3 除磷生物濾床之程序30
第 三 章 實驗設計與方法37
3.1 生物濾床基本結構設計37
3.2 實驗設計38
3.2.1 實驗模廠設計38
3.2.2 穩態培養實驗設計40
3.2.3 批次實驗設計41
3.2.4 實驗流程圖43
3.3 實驗基質與分析設備、方法44
3.3.1 人工基質的配置44
3.3.2 分析方法45
3.3.3 分析設備46
第 四 章 結果與討論47
4.1 生物濾床併同去除碳、氮、磷之特性47
4.1.1 處理結果分析47
4.1.2 三段式生物濾床對除碳效果的結果比較59
4.1.3 三段式生物濾床對除氮效果的結果比較63
4.1.4 三段式生物濾床對除磷效果的結果比較70
4.2 循環時間與濾床高度對結果展現的分析比較79
4.2.1 循環時間對結果展現的分析比較79
4.2.2 濾床高度對結果展現的分析比較83
4.3 生物濾床併同處理碳、氮、磷特性之探討89
4.3.1單管濾床厭氧批次實驗特性之比較89
4.3.2單管濾床好氧批次實驗特性之比較94
4.4 循環時間與濾床高度對濾床處理特性之探討103
4.4.1 循環時間對單管批次實驗特性之比較探討103
4.4.2 濾床高度對單管批次實驗特性之比較探討109
4.4.3 生物膜污泥特性與PHAS轉化之探討114
第 五 章 結論與建議121
5.1 結論121
5.2 建議123
參考文獻124
附錄129
參考文獻 1.Arnz, P., Esterl, S., Nerger, C., Delgado, A. and Wilderer, P. (2000) “Simultaneous loading and draining as a means to enhance efficacy of sequencing biofilm batch reactor” Wat. Res., 34(5), 1763-1766.
2.Bishop, P. L. and Zhang, T. C. (1994) “Density, porosity and pore of biofilm” Wat. Res., 28(11), 2267-2277.
3.Brandl, H., Gross, R. A., Lenz R. W. and Fuller, R. C. (1988) “Pseudomonas oleovoran as a source of Poly(β-hydroxyalkanoates) for potential applications as biodegradable polyester” App. Environ. Microbiol., 54(8), 1977-1982.
4.Canler, J. P. and Perret, J. M. (1994) “Biological aerated filters: assessment of the process based on 12 sewage treatment plants” Wat. Sci.Tech. 29(10-11), 13-22.
5.Chang, W. C. Chiou, R. J. Ouyang, C. .F. (1996) “The effect of residual substrate utilization on sludge settling in an EBPR process”, Wat. Sci. and Tech, 34, 425-430.
6.Characklis, W. G., Turlear, M. G., Bryers, J. D. and Zelver, N. (1982) “Dynamics of biofilm processes: Methods” Wat. Res., 16, 1207-1216.
7.Characklis, W. G. and Marshall, K. C. (1990) Biofilm, John Wiley & Sons, INC.
8.Chiou, R. J. and Ouyang, C. F. (Accepted, 2001) ”The effect of recycle ratio on nitrogen removal in the combined pre-denitrification / nitrification biofilter system” J. Chem. Tech. & Biotech..
9.Chiou, R. J. and Ouyang, C. F. (Accepted, 2001) “The effect of the flow pattern on organic oxidation and nitrification in the aerated submerged biofilters”, J. Environ. Technol.
10.Chiou, R. J., Ouyang, C. F., Lin, K. H. and Chuang, S. H. (Accepted, 2000) “The characteristics of phosphorus removal in an anaerobic / aerobic sequential batch biofilter reactor”, Wat. Sci. and Tech.
11.Chiou, R. J., Ouyang, C. F. and Lin, C. T. (1999) “The effect of filter height on nitrification and organic oxidation in a submerged biofilter”, 7th IAWQ Asia-Pacific Regional Conference, Taipei, 511-516.
12.Chiou, R. J., Ouyang, C. F. and Lin, K. H. (2000). “The characteristics of phosphorus removal in an anaerobic / aerobic sequential batch biofilter reactor”, the proceeding of Conference on Wastewater and EU-Nutrient Guidelines, Amsterdan, the Netherlands, 74-81.
13.Chui, P. C., Terashima, Y., Tay, J. H. and Ozaki, H. (1996) “Performance of a partly aerated biofilter in the removal of nitrogen” Wat. Sci.Tech., 34(1-2),187-194.
14.Chudoba, P. and Pujol, R. (1996) “A three-stage biofilter process: performances of a plant”, IAWQ 19th Biennial International Conference, Vancouver, Canada, pp.262-269.
15.Cour Jansen, L., Jepsen, S. E. and Dahlgren Laursen, K. (1994) “Carbon utilization in denitrifying biofilters”, Wat. Sci.Tech., 29(10-11), 101-109.
16.Comeau, Y., Hall, K. J. and Oldham, W. K., (1988) “Determination of Poly-β-hydroxybutyrate and Poly-β-hydroxyvalerate in activated sludge by gas-liquid chromatography” App. Environ. Microbiol., 54, 2325-2327.
17.Falkentoft, C. M., Harremoes, P., Mosbak, H. and Wilderer, P. (1999) “ Combined denitrification and phosphorus removal in a biofilter” IAWQ Conference on Biofilm Systems, New York, USA, Oct.
18.Fdz-Polanco, F., Villaverde, S. and Garcia, P. A. (1996) “Nitrite acculuation in submerged biofilters combined effects” Wat. Sci.Tech. 34(3-4), 371-378.
19.Fdz-Polanco, F., Mendez, E. and Villaverde, S. (1995) “Study of nitrifying biofilms in submerged biofilters by experimental design methods” Wat. Sci.Tech., 32(8), 227-233.
20.Furumai, H. et al (1996) “Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter” Wat. Sci.Tech., 34(1-2), 355-362.
21.Gonzalez-Martinez, S. and Wilderer, P. A. (1991) “Phosphate removal in a biofilm reactor.” Wat. Sci. Tech., 23(Kyoto), 1405-1415.
22.Goncalves, R. F. and Rogalla, F. (1992) “Biological phosphorus removal in fixed film reactors” Wat. Sci. Tech., 25(12), 135-143.
23.Goncalves, R. F.and Rogalla, F. (1994) “Biological phosphorus uptake in submerged biofilters with nitrogen removal”, Wat. Sci.Tech., 29(10-11), 135-143.
24.Goncalves, R. F and Rogalla, F. (1995) “Biological phosphorus removal in fixed film reactors”, Wat. Sci.Tech., 30(11), 1-12.
25.Goncalves, R. F and Rogalla, F. (1999) “Designing and ideal A/O cycle for phosphorus removal in a submerged biofilter under continuous feed” IAWQ Conference on Biofilm Systems, New York, USA.
26.Halling-Sorensen B. (1993) “The removal of nitrogen compounds from wastewater” Elsevier, Denmark, pp153-165;215-216.
27.Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. R., (1995) “Activated Sludge Modeling No. 2. IAWQ”, London.
28.Hu, H. Y., Fujie K. and Urano, K. (1993) “Dynamic behavior of aerobic submerged biofiter", Wat. Sci.Tech., 28(7), 179-185.
29.Kent, T. D. Fitzpatrick, C. S. B., and William, S. C. (1996) “Treating of biological aerated filter (BAF) media” Wat. Sci.Tech., 34(1-2), 347-353.
30.Kerrn-Jespersen, J. P., Henze M. and Strube R. (1994) “Biological Phosphorus Release Under Alternating Anaerobic and Anoxic Conditions in a Fixed-Film Reactor,” Wat. Res., Vol. 28, No. 5, pp. 1253-1255.
31.Kim, D. J. and Joo, S. H. (1999) “Nitrite accumulation in a biological aerated filter by oxygen limitation” IAWQ Conference on Biofilm Systems, New York, USA, Oct.
32.Masuda, S., Watanabe, Y. and Ishiguro, M. (1991) “Biofilm properties and simulataneous nitrification and denitrification in arobic RBC” Wat. Sci. Tech., 23(7-9), 1355-1363.
33.Matsao, T., Mino, T. and Satoh, H. (1992) “Metabolism of organic substrate in anaerobic phase of biological phosphorus uptake process” Wat. Sci.Tech., 25(6), 83-92.
34.Meaney, B. J. and Strickland, J. E. T. (1994) “Operating experiences with submerged filters for nitrification and denitrification” Wat. Sci.Tech. 29(10-11), 119-125.
35.Mino, T., Satoh, H. and Matsuo, T. (1994) “Metabolisms of different bacterial populations in enhanced biological phosphate removal processes” Wat. Sci.Tech., 29(7), 67-70.
36.Mino, T. (1998) “Handout of Advanced Wastwater Biological Treatment Engineering”, NCU Publishing,.
37.Morgenroth, E. and Wilderer, P. A. (1998) “Modeling of enhanced biological phosphorus removal in a sequencing batch biofilm reactor” Wat. Sci. Tech., 37(4-5), 583-587.
38.Morgenroth, E. and Wilderer, P. A. (1999) “Controlled biomass removal — the key parameter to achieve enhanced biological phosphorus removal in biofilm systems” Wat. Sci. Tech., 39(7), 33-40.
39.Orhon, D. and Artan, N. (1994) “Modeling of activated sludge system.” Technomic Publishing Company, INC.
40.Ouyang, C. F., Chiou, R. J. and Lin C. T. (2000) ”The characteristics of nitrogen removal by the biofilter system” Wat. Sci. Tech., 42(12), 137-147.
41.Ouyang C. F., Chiou R. J. and Lin C. T. (1999) ”The characteristics of nitrogen removal by the biofilter system.” The International Symposium on Development of Innovative Water and Wastewater Treatment Technologies for the 21st Century, Hong Kong, China, 184-197.
42.Pak D. and Chang W.(1998) “Factors Affecting Phosphorus Removal in Two Biofilter System Treating Wastewater from Car-Washing Facility,” Korea.
43.Peladan, J. G., Lemmel, H. and Pujol, R. (1996) “High nitrification rate with upflow biofilteration” Wat. Sci.Tech. 34(1-2), 347-353.
44.Pujol, R., Canler, J. P. and Vachon A. (1992) “Biological aerated filters: an attractive and alternative biological process”, Wat. Sci.Tech., 26(3-4), 693-702.
45.Rahmani H., Roles J. L., Capdeville B., Cornier J. C. and Deguin A. (1995) “Nitrite removal by a fixed culture in a submerged granular biofilter” Wat. Res.,.29(7), 1745-1753.
46.Richter, K.-U. and Kruner, G. (1994) “Elimination of nitrogen in two flooded and statically packed bed biofilters with aerobic and anaerobic microsites” Wat. Res., 28(3), 709-716.
47.Rozzi, A., Albano, C. and Bani-Hani, A. (1999) “kinetics of ammonia oxidation to nitrite in moving bed biofilm reactors” IAWQ Conference on Biofilm Systems, New York, USA.
48.Schreff, D. and Wilderer, P. (1998) “Nitrogen removal in multi-stage wastewater treatment plants by using a modified post-denitrification system” Wat. Sci. Tech., 37(9), 151-158.
49.Suthersan, S. and Ganczarczyk, J. J. (1986) “Inhibitation of nitrite oxidation during nitrification: some obervations” Wat. Poll. Res. 21, 257-266.
50.Shanableh, A., Abeysinghe, D. and Hijazi, A. (1997) “Effect of cycle duration on phosphorus and nitrogen transformations in biofilters” Wat. Res., 28(1), 149-153.
51.Shanableh, A. and Hijazi, A. (1998) “Treatment of simulated aquaculture water using biofilters subjected to aeration/noaeration cycles” Wat. Sci. Tech., 38(8-9), 223-231.
52.Standard Methods for the Examination of Water and wastewater. 19th edn, (1995) American Public Health Association/American Water works Association/Water environment Federation, Washington DC, USA..
53.Talbot, P., T. Belanger, G. and Pelletier, M. (1996) “Development of a biofilter using an organic medium on site wastewater treatment” Wat. Sci. Tech., 34(3-4), 435-441.
54.Villaverde, S., Garcia-Encina, P. A. and Fdz-Polanco, F. (1997) “Influence of pH over nitrifying biofilm activity in submerged biofilters” Wat. Res., 31(5), 1180-1186.
55.Wanner, O. (1995) “Modeling biofilm accumulation and mass transport in a porous media under high substrate loading” Biotechnol. Bioeng., 47, 703-712.
56.Wanner, O., Debus, O. and Reichert, P. (1994) “Modeling the spatial-distribution and dynamics of a xylene-degrading microbial population in a membrane-bound biofilm” Wat. Sci. Tech., 29(10-11), 243-251.
57.Wanner, O. and Reichert, P. (1996) “Mathematical-modeling of mixed-culture biofilms” Biotechnol. Bioeng., 49(2), 172-184.
58.Wanner, O. and Gujer, W. (1986) “A multispecies biofilm model” Biotechnol. Bioeng., XXVIII, 314-328.
59.Watanabe, Y., Okabe, S., Arata, T. and Haruta, Y. (1994) “Study on the performance of an up-flow aerated biofilter (UAB) in municipal wastewater treatment” Wat. Sci.Tech., 30(11), 25-33.
60.Wentzel, M. C., Lotter, L. H., Ekama, G. A. , Loewenthal R. E. and Marais G. R. (1991) “Evaluation of biochemical models for biological excess phosphorus removal.” Wat. Sci.Tech., 23(Kyoto), 567-576.
61.Williamson, K. J. and McCarty, P. L. (1976) “A model of substrate utilization by bacterial films.” J. WPCF., 48(1), 9-24.
62.林志墩、 邱仁杰、 歐陽嶠暉,(1999) ”好氧生物濾床處理都市污水碳、氮之研究”,第二十四屆廢水處理技術研討會, 121-126
63.邱仁杰、歐陽嶠暉,”浸水式生物濾床處理污水營養物質之研究”,國立中央大學環工所博士論文,民國90年
64.邱仁杰、歐陽嶠暉、林志墩,”生物濾床去除營養物質之原理與程序”,國立中央大學環境工程學刊第五期,民國87年
65.歐陽嶠暉,”生物處理法新技術”,國立中央大學環工所,民國87年2月
指導教授 歐陽嶠暉(Chaio-Fuei Ouyang) 審核日期 2001-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明