博碩士論文 88346003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.149.29.95
姓名 邱英嘉(Ing-Jia Chiou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 都會下水污泥及其焚化灰渣之輕質資材化研究
(Lightweight Materials Study on Municipal Sewage Sludge and Incinerated Ash)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前廢污泥的資源化多半僅能部分摻加或取代傳統生料的方式,故資源化途徑與消耗量受到限制。本研究藉由下水污泥及其灰渣的特性加以調質與全程使用廢污泥,以達節能與資源化的創新性。本研究利用下水污泥及其焚化灰渣燒製人造骨材,並以下水污泥灰常溫產製發泡輕質材。探討「下水污泥及其焚化灰渣混合料燒製輕質骨材」、「下水污泥灰發泡輕質材的發泡行為與巨微觀特性」,以及「下水污泥灰發泡輕質材的熱傳機制與熱學行為」等三個研究子題。實驗結果顯示:
首先,在「下水污泥及其焚化灰渣混合料燒製輕質骨材」方面,下水污泥及其灰渣可單獨或併同燒製常重或輕質骨材,下水污泥具成分調質劑的功能;灰渣中增加污泥用量會降低滾動造粒的成球率。在1,050-1,100˚C燒製範圍內,灰渣中每增加1%有機質可降低骨材的容積密度0.056-0.491g/cm3。純污泥灰的配比適合燒製常重骨材,較低下水污泥用量的配比(0-10%)適合燒製中密度骨材(1.0-1.6g/cm3),較高下水污泥用量的配比(20-30%)則適合燒製低密度骨材(<1.0g/cm3)。下水污泥輕質骨材發泡混凝土的的熱傳導率介於0.216-0.354W/mºK,僅輕質混凝土的0.33-0.50。
其次,在「下水污泥灰發泡輕質材的發泡行為與巨微觀特性」方面,下水污泥灰無法提供足量的鹼度促使鋁粉產生發泡反應,需提供相當於0.1 mole/L 的NaOH水溶液鹼度方有起始發泡反應,而最低的水泥量受制於抗壓強度,而非鹼度;一級廠污泥灰發泡輕質材比二級廠試體具有較高的發泡率、抗壓強度、熱傳導率,及較低的體比重。水泥的水化作用與金屬鋁粉的發泡反應分別以形成小於1µm及大於10µm的孔隙尺寸為主;在相同配比條件下,一級廠試體的總孔隙體積均高於二級廠試體;一級廠及二級廠下水污泥灰發泡輕質材的主要孔隙分布範圍分別為0.6-4.0μm及0.02-0.6μm。在高用水量與高量的大於10μm孔隙存在,容易形成開放且連通孔隙。使用廢五金粉末的試體發泡率平均約比試藥級鋁粉低18%,廢五金粉末用量較鋁粉增加約10-15%時,可獲得相近的發泡率與抗壓強度;廢五金粉末在試體中,其孔隙尺寸能較均勻分佈,別於鋁粉集中在大於10μm。
最後,在「下水污泥灰發泡輕質材的熱傳機制與熱學行為」方面,下水污泥灰發泡輕質材的熱傳方式為固體傳導及氣體傳導,而輻射熱傳與自然對流均可忽略。下水污泥灰具有多孔特性、不規則顆粒形狀與低熱傳率(0.185 W/moK)的特性,配比參數對下水污泥發泡輕質材的熱傳導率影響權重依序為發泡劑用量(F/S)、水固比(W/S)、灰固比(A/S)。一級廠及二級廠下水污泥灰發泡輕質材的熱傳導率介於0.088-0.251W/moK及0.074-0.151W/moK,分別有75%及100%符合絕熱材料對熱傳導率的要求。而在高溫行為方面,下水污泥灰的燒結效應對發泡輕質材的體比重及體積收縮率的影響顯著於水化產物分解及脫水行為的影響;在1,000-1,093˚C高溫作用下,水泥量對下水污泥灰發泡輕質材的抗壓強度呈負效應,而增加下水污泥灰用量則因燒結效應能顯著提高抗壓強度。下水污泥灰發泡輕質材經1,093°C定溫焚燒後,因高溫熔流作用產生的緻密效應使0.1-1.0µm以下的孔隙明顯降低,而大於1.0μm的孔隙則明顯增加;前述溫度使試體達到液相燒結的粗化階段,使總孔隙體積較未焚燒前降低29.71%,而以毛細孔體積減少28.98%最顯著,而膠孔體積僅微幅變化,此時試體以存在大於1μm的孔隙為主。
摘要(英) Nowadays, most of the reuse and recycling of waste sewage sludge can only partially add in or replace the traditional raw materials. Therefore, recycling application and consumption are limited. In this study, the compositions of sewage sludge and its incinerated residues were adjusted, and sewage sludge was used for the whole process to save energy and to innovate the recycling methodology. Sewage sludge and incinerated residues were used to sinter artificial aggregates. In addition, sewage sludge ash was adopted to make foamy lightweight material under room temperature. Then, three topics, “Lightweight Aggregate Made from Sewage Sludge and Incinerated Ash”, “Foaming Behavior and Macro/Micro Properties of Foamy Lightweight Materials Made of Sewage Sludge Ash”, and “Thermal Conductivity Mechanism and Thermal Behavior of Sewage Sludge Ash Lightweight Materials”, were studies. The experimental results indicated that:
In “Lightweight Aggregate Made from Sewage Sludge and Incinerated Ash”, sewage sludge alone or with incinerated residues could be sintered normal-weight or lightweight aggregates. Sewage sludge could be used as the adjusting agent of composition. Adding sewage sludge amount in incinerated residues would decrease the palletizing ratio. At 1,050-1,100˚C, increasing every 1% of organic matters in the sewage sludge ash would decrease the bulk density of aggregates by 0.056-0.491g/cm3. The mixing proportion of pure sewage sludge ash was suitable to sinter normal-weight aggregates, the mixing proportion with only 0-10% of sewage sludge in the incinerated residues was good to sinter moderate density aggregates (1.0-1.6g/cm3), and the mixing proportion with 20-30% of sewage sludge in the incinerated residues would be used to sinter high density aggregates (<1.0g/cm3). The thermal conductivity of lightweight aggregate foamed concrete made of sewage sludge ranged between 0.216 W/mºK and 0.354W/mºK, which was only 0.33-0.50 of conventional lightweight concrete.
In “Foaming Behavior and Macro/Micro Properties of Foamy Lightweight Materials Made of Sewage Sludge Ash”, sewage sludge ash could not provide sufficient alkalinity to cause the foaming reaction of Aluminum powder until the addition of 0.1 mole/L equivalence of NaOH solution. The least cement amount in sewage sludge ash foaming lightweight materials (SSAFLM) were restrained by compressive strength, not alkalinity. Compared with secondary sewage sludge ash foaming lightweight materials (SSSAFLM), primary sewage sludge ash foaming lightweight materials (PSSAFLM) would have higher foaming ratio, compressive strength, thermal conductivity and lower bulk specific gravity. The hydration reaction of cement and foaming reaction of aluminum powder were mainly to produce the pores smaller than 1µm and pores larger than 10µm respectively. With the same mixing proportion, PSSAFLM would have greater total pore volume than SSSAFLM. The pore size distributions of PSSAFLM and SSSAFLM were 0.6-4.0μm and 0.02-0.6μm respectively. With high water usage and great amount of pores larger than 10μm, the open and connected pores would be easily formed. The foaming ratio of SSAFLM with mixed scrap metal waste powder was averagely lower than that of aluminum powder by 18%. When increasing the mixed scrap metal waste powder by 10-15% more than aluminum powder, SSAFLM would have similar foaming ratio and compressive strength. Pore sizes in SSAFLM with mixed scrap metal waste powder distributed evenly, which was different from that most of the pores in SSAFLM with aluminum powder were larger than 10μm.
In “Thermal Conductivity Mechanism and Thermal Behavior of Sewage Sludge Ash Lightweight Materials”, at the room temperature in air, the thermal conduction of the SSAFLM would be via solid and gas conduction, and both radiative thermal conduction and natural convection could be ignored. The porous structure and irregular particles of the SSA make it have the characteristics of low thermal conductivity (0.185 W/moK). The influence weighting of mixing parameters to the thermal conductivity of SSAFLM were foaming agent amount (F/S), water-to-solids ratio (W/S), and sewage sludge ash amount (A/S) in turn. The thermal conductivities of PSSAFLM and SSSAFLM were 0.088-0.251 W/m.oK and 0.074-0.151W/m.oK respectively. Besides, 75% of PSSAFLM and 100% of SSSAFLM met the requirement of insulating materials in thermal conductivity. In high temperature behavior, the sintering effect of sewage sludge ash affected bulk specific gravity and volume shrinkage of SSAFLM more significantly than hydrates decomposition and dewater behavior did. Between 1000°C and 1093°C, the compressive strength of SSAFLM was in an inverse relationship with the amount of cement, and increasing the amount of sewage sludge ash would enhance the strength significantly. After fired at 1093°C, SSAFLM completed the enlarging stage of liquid phase sintering, and thus decreased total pore volume by 29.71% averagely than that before fired. Of which, 28.98% out of 29.71% was owing to the decrease of capillary pore volume, and however, the gel pore volume only changed slightly. In the meantime, most of the pore sizes in SSAFLM were larger than 1.0μm.
關鍵字(中) ★ 下水污泥
★ 發泡反應
★ 燒結效應
★ 孔隙結構
★ 輕質建材
關鍵字(英) ★ foaming reaction
★ sewage sludge
★ lightweight materials
★ pore structure
★ sinter effect
論文目次 目錄
第一章 前言
1-1 研究緣起與目的……………………………………………………..…1
1-2 研究內容……………………………………………………………..…3
1-3 研究流程……………………………………………………………..…4
第二章 文獻回顧…………………………………………………………...…6
2-1 都會下水污泥及其焚化灰渣的處理處置與資源化…………………..6
2-1-1 都會下水污泥的環境影響………………………………………...6
2-1-2 下水道設施與下水污泥的產量………………………………...…7
2-1-3 都會下水污泥及其焚化灰渣的類型與特性…………………...…8
2-1-4 都會下水污泥及其焚化灰渣的資源化……………………….…15
2-2 輕質骨材的膨化機制與燒結行為……………………………………29
2-2-1 國內外輕質骨材的發展趨勢…………………………………….31
2-2-2 燒結型輕質骨材的膨脹機制………………………………….…34
2-2-3 燒結型輕質骨材的燒結行為………………………………….…38
2-2-4 燒結型輕質骨材的生產技術…………………………………….49
2-2-5 污泥及其焚化灰渣產製輕質骨材的相關研究探討……….……51
2-3 發泡輕質材的反應行為與材料性能…………………………………55
2-3-1 發泡輕質混凝土的類型與應用………………………………….56
2-3-2 發泡輕質材的發泡反應、水化作用與卜作嵐特性………….…58
2-3-3 多孔性混凝土的產製配比與材料特性……………………….…67
2-4 輕質或發泡混凝土的熱傳機制與熱學性能…………………………72
2-4-1 熱傳導的理論與機制…………………………………………….73
2-4-2 輕質或隔熱材料的共同特性與選用原則…………………….…77
2-4-3 熱傳特性的影響因子…………………………………………….79
2-4-4 輕質混凝土的熱物理特性…………………………………….…85
2-4-5 溫度對水泥系材料的影響……………………………………….89
第三章 研究架構與方法論……………………………………………….…97
3-1 實驗流程………………………………………………………………97
3-2 實驗材料………………………………………………………………97
3-2-1 下水污泥的來源………………………………………………….97
3-2-2 下水污泥粉末的製備程序與性質……………………………….99
3-2-3 下水污泥灰的製備程序與性質………………………………...101
3-2-4 廢五金粉末的製備程序與性質……………………………...…107
2-2-5 其他摻料……………………………………………………...…107
3-3 主要實驗設備……………………………………………………..…108
3-4 實驗配比……………………………………………………………..110
3-4-1 發泡輕質材……………………………………………………...110
3-4-2 輕質骨材………………………………………………………...111
3-4-3 輕質骨材發泡混凝土…………………………………………...112
3-5 實驗操作……………………………………………………………..113
3-5-1 發泡輕質材……………………………………………………...113
3-5-2 輕質骨材及發泡混凝土………………………………………...116
3-6 分析方法……………………………………………………………..119
第四章 下水污泥及其灰渣混料燒製輕質骨材之研究…………………...126
4-1 造粒條件與雛粒性質………………………………………………..126
4-1-1 成分調質………………………………………………………...127
4-1-2 造粒技術與雛粒性質…………………………………………...128
4-1-3 小結……………………………………………………………...131
4-2 成分調質對燒結型下水污泥骨材的影響……………………..……131
4-2-1 化學成分與重金屬特性……………………………………...…134
4-2-2 製程燒失量…………………………………………………...…136
4-2-3 燒結效應………………………………………………………...137
4-2-4 下水污泥輕質骨材的物化性質………………………………...141
4-2-5 微觀結構………………………………………………………...146
4-2-6 小結…………………………………………………………...…149
4-3 骨材類型與鋁粉用量對發泡混凝土的材料特性影響……………..149
4-3-1 骨材類型對發泡混凝土的影響………………………………...150
4-3-2 鋁粉用量對發泡混凝土的影響………………………………...154
4-3-3 小結……………………………………………………………...156
第五章 下水污泥灰發泡輕質材的發泡行為與巨微觀特性……………...157
5-1配比參數對發泡輕質材的膨化行為與巨微觀性質影響…………...157
5-1-1 下水污泥灰類型………………………………………………...158
5-1-2 下水污泥灰用量………………………………………………...172
5-1-3 水固比…………………………………………………………...174
5-1-4 金屬鋁粉用量…………………………………………………...176
5-1-5 小結……………………………………………………………...178
5-2 鋁製品廢料之金屬發泡劑資源化研究……………………………..179
5-2-1 廢五金粉末製備技術及材料特性……………………………...179
5-2-2 發泡反應與產氣分析…………………………………………...180
5-2-3 材料性質………………………………………………………...184
5-2-4 孔隙結構與微觀影像…………………………………………...189
5-2-5 小結……………………………………………………………...192
第六章 下水污泥灰發泡輕質材的熱傳機制與燒結行為……………...…193
6-1 下水污泥灰發泡輕質材的熱傳機制………………………………..193
6-1-1 熱傳機制………………………………………………………...193
6-1-2 小結……………………………………………………………...197
6-2 下水污泥灰發泡輕質材的隔熱性能………………………………..197
6-2-1 下水污泥灰的物化性質對發泡輕質材的熱傳特性影響……...197
6-2-2 孔隙結構對發泡輕質材的熱傳特性影響……………………...199
6-2-3 微觀結構對發泡輕質材的熱傳特性影………………………...201
6-2-4 小結……………………………………………………………...202
6-3 下水污泥灰發泡輕質材的燒結行為與高溫特性…………………..203
6-3-1 定溫1,093˚C焚燒對下水污泥灰發泡輕質材的影響………….203
6-3-2 變化溫度焚燒對下水污泥灰發泡輕質材的影響……………...219
6-3-3 小結……………………………………………………………...224
第七章 綜合評析與資源化策略…………………………………………...225
第八章 結論與建議………………………………………………………...229
8-1 結論………………………………………………………………..229
8-2 建議………………………………………………………………..228
參考文獻…………………………………………………………………….233
參考文獻 參考文獻
行政院內政部營建署全球資訊網站,http://www.cpami.gov.tw/,台灣地區污水處理率統計,台北(2004)。
歐陽嶠暉,台灣下水道發展策略,台灣下水道協會,台北(2001)。
李公哲,水質管理之原理,大學圖書公司,台北(1984)。
何品晶、顧國維、李篤中,城市污泥處理與利用,科學出版社,北京(2003)。
周少奇、肖錦,城市污泥處理處置與資源化,華南理工大學,廣州(2002)。
趙慶祥,污泥資源化技術,化學工業出版社,環境科學與工程出版中心,北京(2002)。
歐陽嶠暉,下水道工程學,長松出版社,增訂版,台北(2000)。
日本下水道實務研究會,新下水道事業,第6卷,日本(1999)。
胡光復,下水污泥焚化灰渣資源化再利用計畫,復興學報,第67~72頁,宜蘭(1999)。
李俊德,「輕質骨材性質與最佳混凝土強度之研究」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北(1996)。
王根元,有機質和氧化鐵的氧化-還原反應對黏土岩成岩作用和黏土加熱膨脹的影響,北京市建材所,北京(1979)。
陳芳烈,粉煤灰陶粒膨脹機理研究,陜西省建築科研所,西安(1985)。
龔洛書、柳春圃,輕集料混凝土,中國鐵道出版社,北京(1995)。
日本下水道月刊,調查報告/下水污泥之建設資材利用技術之現狀課題,第七期,第二卷,日本(1994)。
王櫻茂、顏聰,人造輕質骨材燒製及其物理化學性質研究,營建資訊,第120期,pp.17-29(1992)。
顏聰,「人造輕質骨材混凝土之製造及工業化研究」,財團法人台灣營建中心,台北(1993)。
伍祖聰、黃錦鐘,粉末冶金,高立圖書有限公司,台北(1996)。
程道腴、鄭武輝,工業陶瓷,徐氏基金會,台北(1992)。
汪建民主編,陶瓷技術手冊,經濟部技術處發行,中華民國產業科技發展協進會/中華民國粉末冶金協會出版,新竹(1994)。
陳培源,陶瓷原料之礦物鑑定技術,陶業季刊,第十卷第二期,pp.62-84(1991)。
錢之榮、范應舉,耐火材料實用手冊,冶金工業出版社,北京(1996)。
余岳峰,「下水污泥焚化灰渣燒成輕質骨材特性之研究」,碩士論文,國立中央大學環工所,中壢(2000)。
沈永年,「高性能混凝土水化作用機理之研究」,博士論文,國立台灣科技大學營建工程所,台北(1997)。
黃兆龍,混凝土性質與行為,詹氏書局,台北(1997)。
黃兆龍,混凝土材料品質控制試驗,詹氏書局,台北(1988)。
潘存真,「輕質骨材之級配條件對輕質混凝土強度及隔熱性之影響」,碩士論文,國立中興大學土木工程研究所,台中(1993)。
許讚全、劉昌民、吳天化、郭淑德,「飛灰與廢電石渣混合做發泡輕質磚之可行性研究」,台灣電力公司研究報告,台北(1990)。
高健章、沈進發、陳式毅、陳朝和、黃兆龍,「輕質混凝土在國內發展之研究」,內政部建築研究所籌備處專題研究計畫,台北(1993)。
黃忠良,多孔材料學-結構與性質、理論與應用,復漢出版社,台南(1990)。
楊志政,「下水污泥灰系度變化與矽氧晶相對燒成骨材輕質化之影響」,碩士論文,國立中央大學環境工程研究所,中壢(2001)。
王弟文,「下水污泥焚化灰製造發泡輕質混凝土之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2001)。
鄭欽仁,「下水污泥揮發泡混凝土之輕質化與隔熱特性研究」,碩士論文,國立中央大學環境工程研究所,中壢(2002)。
林月婷,「下水污泥焚化灰燒製輕質骨材與應用於混凝土材料之性質研究」,碩士論文,國立中央大學環境工程研究所,中壢(2003)。
嚴定萍、雷明遠、陳俊勳,「建築材料熱傳導測試基準」,內政部建築研究所專題研究報告,台北(1997)。
危時秀,「普通混凝土熱傳導性質之研究」,碩士論文,中原大學土木工程研究所,中壢(2003)。
宋佩瑄、黃馨,土木工程材料學,大中國圖書公司,台北(1997)。
日本熱物性學會,Thermo-physical Properties Handbook,養賢堂,日本(1990)。
林銅柱、沈得縣,「高性能混凝土耐火性能之探討」,內政部建築研究所籌備處專題研究報告,台北(1995)。
鄭永傑,「卜作嵐材料及細粒料對水泥漿體熱傳導係數之影響」,碩士論文,國立台灣科技大學營建系,台北(2002)。
沈進發、陳舜田、楊旻森,「壓力作用下混凝土材料火害後之力學行為」,碩士論文,國立台灣工業技術學院工程技術研究所,台北(1990)。
趙文成、林慶元,「輕質混凝土結構樓版耐火性能之探討」,內政部建築研究所籌備處專題研究報告,台北(1995)。
中國國家標準CNS 61 R2001,卜特蘭水泥 (2001)。
中國國家標準CNS 1232 A3045,混凝土圓柱試體抗壓強度檢驗法 (2002)。
中國國家標準CNS 13480 A2256,高壓蒸氣養護輕質氣泡混凝土磚 (1995)。
中國國家標準CNS 7333 A3122,隔熱材料之導熱係數測定法(平板直接法) (1981)。
中國國家標準CNS 7332 A3121,隔熱材料之導熱係數測定法(平板比較法) (1981)。
Tay, J. H., Sludge Ash as Filler for Portland Cement Concrete. Journal of Environmental Engineering, 113(2), April, pp.345-351 (1987).
Tay, J. H. and Yip, W. K., Sludge Ash as Lightweight Concrete Material. ASCE J. of Environmental Engineering, 115(1), pp.56-64 (1989).
USEPA. Land application of biosolids: Process Design Manual. Technomic Publishing Company, Inc. 1999.
Okoli, R. E. and Balafoutas, G., Landfill Sealing Potentials of Bottom Ashes of Sludge Cakes. Soil and Tillage Research, 46(3-4), pp.307-341 (1998).
Aziz, M. A. and Lawrence C. C. K., Potential Utilzation of Sewage Sludge. Water Science and Technology, 22(12), pp.277-285 (1990).
Chesener, W. H., Ash Utilization: An Overview of Engineering, Environmental, Economic and Institutional Issues. in Proceedings of the First International Conference on Municipal Solid Waste Combustor Ash Utilization, UAS, pp.1-14 (1998).
Kato, H. and Takesue, M., Manufacture of Artificial Fine Lightweight Aggregate from Sewage Sludge by Multi-Stage Stream Kiln. Int. Conf. of Recycling, Berlin, Germany, pp.459 (1984).
Alleman, J. E. andBerman, N. A., Constructive Sludge Management: Biobrick. J. Env. Eng. Div., ASCE, 110(2), pp.301-311 (1984).
Tay, J. H, Sludge and Incinerator Residue as Building and Construction Materials. Proc. Interclean’84 Conf., Singapore, pp.252-261 (1984).
Elins, B. V., Wilson, G. E. and Gersberg, R. M., Complete Reclamation of Wastewater and Sludge. Water Sci. Tech., 17, pp.1453-1454 (1985).
George, St. M., Concrete Aggregate from Wastewater Sludge. Journal Concrete International, Vol. 8, pp.27-30 (1986).
Tay, J. H., Properties of Pulverized Sludge Ash Blended Cement. ACI Material Journal, September-October, pp.358-364 (1987).
Bhatty, J. I. and Reid, K. J., Compressive Strength of Municipal Sludge Ash Mortars. ACI Materials Journal, July-August, No. 86-M34 (1989).
Tay, J. H. and Yip, W. K., Sludge Ash As Lightweight Concrete Material. ASCE J. of Environmental Engineering, 115(1), pp.56-64 (1989).
Donald, J. L., Compressive Strength of Cement Containing Ash from Municipal Refuse or Sewage Sludge Incinerators. Environmental Contamination and Toxicology, 42, pp.540-543 (1989).
Shaw, T., Improvement in Utilizing The Waste Produced From Sewage Words for The Manufacture of Bricks, Tiles, Quarries, Building Blocks, Slabs, and The Like. United Kingdom Patent, No. 12, pp.623 (1989).
Yip, W. K. and Tay, J. H., Aggregate Made from Incinerated Sludge Residue. J. Materials in Civ. Eng., Div., ASCE, 2(2), pp.84-93 (1990).
Tay, J. H. and Show, K. Y., Properties of Cement Made from Sludge. J. Env. Eng. Iv., ASCE, 117(2), pp.236-246(1991).
Slim, J. A. and Wakefield, R. W., The Utilization of Sewage Sludge in The Manufacture of Clay Bricks. Water Science and Technology, 17, pp.197-202 (1991).
Trauner, E. J., Sludge Ash Bricks Fired to Above and Below Ash-Vitrifying Temperature. J. Env Eng. Div., ASCE, 119(3), pp.506-519 (1991).
Bhatty, J. I., Malisci, A., Iwasaki, I. and Reid, K. J., Sludge Ash Pellets as Course Aggregates in Concrete. Cement, Concrete and Aggregates, CCAGDP, 14(1), pp.55-61 (1992).
Pinarli V. and Emre, N. K., Constructive Sludge Management-Reutilization of Municipal Sewage Sludge in Portland Cement Mortars. Environmental Technology, Vol. 114, pp.833-841 (1994).
Khanbilvardi, R. and Afshari, S., Sludge ash as fine aggregate for concrete mix. J. Env. Eng. Div., ASCE, 121(9), pp.633-638 (1995).
Khaddari, J., Suttisonk, B. Pratinthong, N. and Hirunlabh, J., New lightweight composite construction materials with low thermal conductivity, Cement and Concrete Composites. 23(1), pp.65-70, 2001.
Monzo, J., Paya, J., Borrachero, M. V. and Corcoles, A., Use of Sewage Sludge Ash (SSA)-Cement Admixtures in Mortars. Cement and Concrete Research, 26(9), pp.1389-1398 (1996).
Anderson M., Skerratt, R. G., Thomas J. P. and Clay, S. D., Case Study I nvolving Using Fluidised Bed Incinerator Sludge Ash as a Partial Clay Substitute in Brick Manufacture. Water Science and Technology, 34(3-4), pp.507-515 (1996).
Wiebusch, B. and Seyfired, C. F., Utilization of Sewage Sludge Ashes in The Brick and Tile Industry. Water Science and Technology, 36(11), pp.251-258 (1997).
Tay, J. H. and Show, K. Y., Resource Recovery of Sludge as a Building and Construction Material - A Future Trend in Sludge Management. Water Science and Technology, 36(11), pp.259-266 (1997).
Wiebusch, B., Ozaki, M., Watanabe, K. and Seyfried, C. F., Assessment of leaching tests on construction material made of incineration ash (sewage sludge): Investigations in Japan and Germany. Water Science and Technology, 38(7), pp.195-205 (1998).
Okoli, R. E. and Balafoutas, G., Landfill Sealing Potentials of Bottom Ashes of Sludge Cakes. Soil and Tillage Research, 46(3-4), pp.307-341 (1998).
Monzo, J., Paya, J., Borrachero, M. V. and Peris-Mora, E., Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cement with Different Tricalcium Aluminate Content. Cement and Concrete Research, 29(1), pp.87-94 (1999).
Pandey, S. P. and Sharma, R. L., The Influence of Mineral Additives on The Strength and Porosity of OPC Mortar. Cement and Concrete Research, 30(1), pp.19-23 (2000).
Caponero, J., Tedorio, J. A. S., Laboratory testing of the use of phosphate-coating sludge in cement clinker. Resources Conservation & Recycling, 29(3), pp.169-179 (2000).
Wainwriht, P. J. and Cresswell, D. J. F., Synthetic Aggregates from Combustion Ashs Using an Innovative Rotary Kiln. Waste Management, 21(3), pp.241-246 (2001).
Smith, M. R. and Collis, L., Aggregates, Sand, gravel and crushed rock aggregates for construction purposes, 2nd edition. Geological Society Engineering Geology Special Publication, No 9 (1993).
Litvin, A. and Fiorato, A. E., Concrete International, 3(3), p49 (1981).
RILEM, functional classification of lightweight concrete: Recommendation LC2. 2nd edition (1978).
Riley, C. M., Relation of chemical process the bloating clay. Journal of American Ceramic Scission, 34(4), pp.121-128 (1951).
Elins, B. V., Wilson, G. E. and Gersberg, R. M., Complete Reclamation of Wastewater and Sludge. Water Sci. Tech., Vol. 17, pp.1453-1454 (1985).
George, St. M., Concrete Aggregate from Wastewater Sludge. Journal Concrete International, Vol. 8, pp.27-30 (1986).
Tay, J. H., Yip, W. K., and Show, K. Y., Clay-Blended Sludge As Lightweight Aggregate Concrete Material. Journal of Environmental Engineering, 117(6), pp. 834-844 (1991).
Holm, T. A. and Valsangkar, A. J., Lightweight Aggregate Soil Mechanics: Properties and Applications. Transportation Research Record, No. 1422, pp.7-13 (1993).
Short, A. and Kinniburgh, W., Lightweight Concrete. New York: Wiley (1963).
Short, A. et. al., Lightweight Aggregate Concrete: CEB/FIP Manual of Design and Technology. Lancaster Eng New York: Construction Press (1977).
Bhatty, J. I., Malisci, A., Iwasaki, I. And Reid, K. J., Sludge Ash Pellets as Course Aggregates in Concrete. Cement. Concrete and Aggregates, 14(1), pp.55-61 (1992).
Tay, J. H. and Show, K. Y., “Resource recovery of sludge as a building and construction material- A future trend in sludge management”, Water Science and Technology, 36(11), pp.256-266 (1997).
German, R. M., Liquid Phase Sintering, Plenum Press, 1985.
Coble, R. L., Sintering Crysalline Solids. I. Intermediate and Final State Diffusion Models. J. Appl. Phys., 32(5), pp.787-792 (1961).
Jung, B., and Schoert, H., Viscous sintering of coal ashes 1. Relationships of sinter point and sinter strength to particle size and composition. Energy and Fuel, 5(4), pp.555-561 (1991).
Skrifvars, B. J., Hupa, M., Backman, R. and Hiltunen, M., Sintering Mechanisms of FBC Ashes. Fuel, 73(2), pp.171-176 (1994).
Clarke, J. L., Structural lightweight aggregate concrete. Blackie Academic and Professional (1993).
Newman, J and Owens, P., Advanced Concrete Technology-Properties of lightweight concrete. Butterworth- Heinemann publication (2003).
Young, J. F., Mindess, S., Gray, R. J., and Bentur, A., The Science and Technology of Civil Engineering Materials. Prentice Hall (1999).
Metha, P. K., Concrete-Structure, Material, and Properties, Prentice Hall, Englishwood Cliffs, N. 2 (1986).
Neville, A. M., Properties of concrete. 4th, Longman Group Limited, pp385-391, (1995).
Mindess, S., Young, J. F. and Darwin D., Concrete. 2nd ed., Pearson Education, Inc., (2003).
Diamond, S., Ravina, D. and Lovell, J., The Occurrence of Duplex. 10(2), PP.297-301 (2000).
Chatterji, S., Pozzolanic Property of Natrual and Synthtic Pozzolans: A Compartive Study, ACI SP-79, pp.221-226 (1983).
Dent Glasser, L. S., A Multi-Method Study if C3S Hydration, Cement and Concrete Resrearch, No.6, pp.733-740 (1978).
Pera, J., L. Coutaz, J. Ambroise, and M. Chababbet, Use of Incinerator Bottom Ash in Concrete. Cement and Concrete Research, 27(1), pp.1-5 (1997).
Hu, S. & Li, Y., Research on the hydration, hardening mechanism, and microstructure of high performance expensive concrete. Cement and Concrete Research, 29(7), 1013-1017 (1999).
Park, S. B., Yoon, E. S. & Lee, B. I., Effect of processing and materials variation on mechanical properties of lightweight cement composite, Cement and Concrete Research, 29(2), pp.193-200 (1999).
Masanja, D., The foamed concrete house, Concrete. 36(3), p.17 (2002).
Cox, L. and Van Dijk, S., Foam concrete: a different kind of mix. Concrete. 36(2), pp.54-55 (2002).
Cox, L. and Van Dijk, S., Foam concrete for roof slopes and floor levelling. Concrete, 37(2), pp.37-39 (2003).
Aldridge, D., Foamed concrete, Concrete, 39(10), pp.79 (2000).
Incropera.DeWitt, Fundamentals of Heat and Mass Transfer. 4/e, Wiley (1996).
Kambiz V., Handbook of porous media. Pp.179-181 (2000).
Vermatt, L. S., Shrotriya, A. K., Singh, R. and Chaudhary, D. R., Thermal conduction in two-phase materials with spherical and non-spherical inclusions. Phys. D. 24, pp.1729-1737 (1991).
Hsu, C. T., Cheng, P. C. and Wong, K. W., A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media. Int. J. Heat Mass Transfer, 37, pp.264-269 (1995).
Buonanno, G. and Carotenuto, A., The effective thermal conductivity of a porous medium with interconnected particles. Int. J. Heat Mass Transfer, 40(2), pp.393-405 (1997).
Fu, X., Viskanta, R. and Gore, J. P., Prediction of effective thermal conductivity of cellular ceramics. Int. Comm. Heat Mass Transfer, 25, pp.151-160 (1998).
Liang, X. G. and Qu, W., Effective thermal conductivity of gas-solid composite materials and the temperature difference effect at high temperature. Int. J. Heat Mass Transfer, 42(10), pp.1885-1893 (1999).
Cheng, G. J., Yu, A. B. and Zulli, P., Evaluation of effective thermal conductivity from the structure of a packed bed. Chemical Engineering Science 54(19), pp.4199-4209 (1999).
Siu, W. W. M. and Lee, S. H. K., Effective conductivity computation of a packed bed using constriction resistance and contact angle effects. Int. J. Heat Mass Transfer. 43(21), pp.3917-3924 (2000).
Kikuchi, S., Numerical analysis model for thermal conductivities of packed beds with high solid-to-gas conductivity ratio, Int. J. Heat Mass Transfer. 44(6), pp.1213-1221 (2001).
Sammy, Y., Chan, N., Peng, G. F. and Anson, M., Fire behavior of high-performance concrete made with silica fume at various moisture concrete. ACI Materials Journal, May-June, pp.405-409 (1999).
Xu, Y., and Chung, D. D. L., Effect of sand addition on the specific heat and thermal conductivity of cement. Cement and Concrete Research, 30(1), pp.59-61 (2000).
Chan, Y. N., Luo, X. and Sun, W., Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800ºC. Cement and Concrete Research. 30(2), pp.247-251 (2000).
Joseph, K., Suttisonk, B., Pratinthong, N. and Hirunlabh, J., New lightweight composite construction materials with low thermal conductivity. Cement and Concrete Composites, 23(1), pp.65-70 (2001).
Bouguerra, A., Ledhem, A., Barquin, F. de, Dheilly, R. M. and Queneudec, M., Effect of Microstructure on The Mechanical and Thermal Properties of Lightweight Concrete from Clay, Cement, and Wood Aggregates. Cement and Concrete Research, 28(8), pp.1179-1190 (1998).
Wu, E. O., Hriljac, T., Hwang, C. L. and Young, J. F., Orthosilicate Analysis, A Measure of Hydration in Pastes of Alite and Portland Cement. Communications Of the American Cement, Communications of the American Ceramic Society (1983).
Jazairi, B. E., and Illston, J. M., The Hydration of Cement Paste Using The Semi-Isothermal Method of Derivatite Thermo-gravity. Cement and Concrete Research, 10, pp.361-366 (1980).
Hwang, C. L., Drying Shrinkage and Microstructure of Hydrated Cement Paste. University of Illinois (1983)
Saad, M., Abo-El-Eneint, S., A., Hanna, G. B. and Kotkata, M. F., Effect of temperature on physical and mechanical properties of concrete containing silica fume. Cement and Concrete Research, 26(5), pp.669-675 (1996).
ACI committee 211.1, Standard Practice for Selecting Properties for Normal, Heavyweight and Mass Concrete. Manual of Concrete Practice, Part 1, pp.34 (1988).
Short, A. and Kinniburgh, W., Lightweight concrete, 3rd ed., Applied Science Publishers, Ltd., London (1978).
Harada, T., In Concrete for Nuclear Reactors, Vol. I, ACI, Detroit, MI, pp.377-406 (1972).
Lippe, K. F., The effect of moisture on the thermal conductivity of AAC, Advances in Autoclave Aerated Concrete, Wittmann (ed.), Balkkema, Rotterdam, 1992.
Brown, T. D. and Javaid, M. Y., The Thermal Conductivity of Fresh Concrete. Materials and Structure, 3(18), pp.411-416 (1970).
Scanlon, J. M. and McDonald, J. E., Thermal properties, in Concrete and Concrete-Making. Eds P. Klieger and J. F. Lamond, ASTM Sp. Tech. Publ., Philadelphia, Pa, No.169C, pp.299-39 (1994).
Davey, N., Concrete mixes for various building purposes, Proc. of a Symposium on Mix Design and Quality Concrete, Cement and Concrete Assn. London, pp.28-41 (1954).
ACI committee 517, Accelerated Curing of Concrete at Atmospheric Pressure. State-of-the-art, Manual of Concrete Practice, Part 5, pp.34 (1988).
Zoldners, N. G., In temperature and concrete. SP-25, ACI, Detroit, MI, pp.1-13 (1971).
Abram, M. S., Temperature and concrete, ACI SP-25, pp.37-50 (1973).
Cruz, C. R., Portland Cement Association. J. Res. & Dev., Skokie, III, No. 1, pp.37-45 (1966).
Abrams, M. S., Compressive strength of concrete at temperatures to 1600F, Temperature and Concrete, Detroit, Michigan, ACI SP-25, pp.33-58 (1971).
Zoldners, N. G., Effect of high temperatures on concretes incorporating different aggregates, Mines Branch Research Report R.64, Department of Mines and Technical Surveys, Orrawa (1960).
Lea, F. M. and Davey, N., The deterioration of concrete in structures. London, J. Inst. Civ. Engrs. No.7, pp.248-95 (1949).
ASTM C305, 1980. Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency.
ASTM C31/C31M-03a, 1980. Standards Practice for Making and Curing Concrete Test Specimens in Field.
ASTM C88-99a, 1980. Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate.
ASTM C177-97, 1980. Standard Test Method for Steady-state Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus.
ACI 213R-87, Guide for structural lightweight aggregate concrete, ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete, pp.27 (Detroit, Michigan, 1994).
ACI 523.1 R-92, Guide for cast-in-place low-density concrete, ACI Manual of Concrete Practice, Part 5: Masonry, Precast Concrete, Special Processes, pp.8 (Detroit, Michigan, 1994).
ASTM C311-02, Standard test methods for sampling and testing fly ash or natural pozzolans for use as a mineral admixture in portland-cement concrete (1980).
ASTM C29/C29M-97, Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate (2003).
ASTM C88-99a, Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate (1980).
ASTM C39/C39M-01, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (1980).
ASTM C138/C138M-01a, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete (1980).
ASTM E119-00a, Standard Test Methods for Fire Tests of Building Construction and Materials (1980).
Loudon, A. G. and Stcey, E. F., The thermal and acoustic properties of lightweight concretes, Structural Concrete. London, 3(2), pp.58-95 (1966).
Howell, J. R. and Robert, S., Thermal radiation heat transfer, Taylor & Francis, pp.748-754 (1992).
Lapwood, E. R., Convection of a fluid in porous medium, Proc. Cambridge Philos.Soc. 44, pp.508-521 (1948).
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2005-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明