博碩士論文 88346005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.149.234.141
姓名 陳錫金(Hsi-Jien Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 界面活性劑Octylphenol Polyethoxylates生物降解與復育之研究
(Study on Biodegradation and Bioremediation of Surfactant Octylphenol Polyethoxylates)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 烷基苯酚聚氧乙烯醇類(Alkylphenol polyethoxylates, APEOn)化合物常用於做為界面活性劑和清潔劑,其種類包括壬基苯酚聚氧乙烯醇(Nonylphenol polyethoxylates, NPEOn)和辛基苯酚聚氧乙烯醇(Octylphenol polyethoxylate, OPEOn),APEOn生物降解代謝產物包括壬基苯酚(Nonylphenol, NP)和辛基苯酚(Octylphenol, OP)及其帶有一單位氧乙烯醇的代謝物如Nonylphenol mono-ethoxylate (NPEO1)和Octylphenol mono-ethoxylate (OPEO1)被推論具有生物荷爾蒙性質,此代謝物在環境中當濃度到達一定程度時,就足以對野生動物和人類之內分泌功能造成干擾作用,且此類物質之毒性及難分解性較未分解前之界面活性劑為高,因此,世界許多國家已將APEOn類化合物列為管制使用之對象。由於OPEOn之烷基結構較為簡單,且OP之雌激素效應為NP之10至20倍,因此,本研究以OPEOn為對象,用以評估OPEOn及其代謝產物之生物復育效果,五株從土壤和底泥篩出之OPEOn分解菌中,以30℃,200 rpm恆溫振盪之斜面培養,以OPEOn為唯一碳源,進行五菌株水溶液中生長和OPEOn生物降解效率之評估。土壤縮模(Microcosm)則被用以模擬生物復育程序以評估生物復育之效果,三株外添加菌Pseudomonas nitroreducens TX1、Pseudomonas putida TX2和Pseudomonas sp. OP2亦被添加於土壤中以降解OPEOn及其代謝產物。研究結果顯示,五株環境中所篩出之OPEOn分解菌中,菌株E獲得最大比生長率0.56 h-1和95% OPEOn初級降解效果,菌株A比其他四菌株更能於高OPEOn濃度中生存。對五菌株而言,在5,000 mg/L OPEOn-MSB medium中,1,200 mg/L至1,600 mg/L之(NH4)2SO4濃度,為較適切之氮源使用量,pH 7則為最適之生長環境條件,關於OPEOn及OP之生物復育方面,OPEOn及其代謝產物確實可經由添加外添加菌和土壤原生菌之作用而降解,在91天的實驗操作中,有98%以上的OPEOn達成初級分解,約75%之OP在縮模土壤生物復育過程中降解。直接添加菌株Pseudomonas sp. OP2,可於70天的實驗操作中,提高約25%之OP降解效果。OPEOn土壤中降解路徑分析則找到三種新的代謝產物,包括octylcatechol,butylphenol Polyethoxylates (1 to 3 ethoxylate unit)和phenol。微生物菌相分析顯示菌株Brucellaceae bacterium, Stenotrophomonas maltophilia and Aeromonas hydropila在土壤中之優勢表現,而外添加菌株TX1,TX2及OP2皆能在添加之後,成為縮模土壤中之優勢菌種。本研究證實OPEOn及其代謝產物透過外添加菌添加之生物復育程序為一可行之方法。
摘要(英) Alkylphenol polyethoxylates (APEOn) including nonylphenol polyethoxylates (NPEOn) and octylphenol polyethoxylates (OPEOn) were used very commonly in surfactants and detergents. The biodegradation metabolites of APEOn including nonylphenol (NP), octylphenol (OP), nonylphenol mono-ethoxylate (NPEO1) and octylphenol mono-ethoxylate (OPEO1) are supposed to imitate the natural hormones. The levels of these metabolites present in the environment may be sufficient to disrupt endocrine function in wildlife and humans. These compounds are more toxic and resistant to biological degradation than the parental surfactants. Therefore, the use of APEOn has been limited in many countries. Since the simpler structure of the alkyl group than NPEOn, and the OP obtain10 to 20 fold higher of the estrogenic effect than NP, the OPEOn was dealing with this study to be the target compound for the evaluation of OPEOn and its metabolites bioremediation efficiency. Five strain of OPEOn degrader which isolated from soil and sediments were evaluated in the aquatic medium using OPEOn as the sole carbon source at 30℃, 200 rpm shaking culture. The microcosms assimilated the bioremediation were employed for the evaluation of OPEOn and OP bioremediation efficiency. The exogenous strains of Pseudomonas nitroreducens TX1, Pseudomonas putida TX2, and Pseudomonas sp. OP2 were also utilized to biodegraded OPEOn and metabolites in the soil. The results of this study showed, for five strains of OPEOn degrader, strain E obtained the maximum specific growth rate of 0.46 h-1 and degradation efficiency of 95% for OPEOn primary biodegradation. Strain A can be sustained in the highest OPEOn concentration than the other four strains. The nitrogen source of (NH4)2SO4 with the concentration of 1,200 to 1,600 mg/L and pH 7 were also the feasible growth condition for the five strains in 5,000 mg/L OPEOn-MSB medium. Regarding to the bioremediation of OPEOn and OP, the exogenous degrader and soil indigenous microorganisms approved the OPEOn and metabolites biodegradation in the soil. In 91 days bioremediation period, over 98% of OPEOn and 75% of OP have been degraded in the soil. By the OP directly bioremediation process, around 25 % OP could be degraded in the soil in 70 days bioremediation period by the addition of the exogenous Pseudomonas sp. OP2. The analyzed of OPEOn biodegradation pathway in the soil was also conducted and three novel intermediates including octylcatechol, butylphenol polyethoxylates with 1-3 ethoxylate unit, and phenol had been found. The analysis of bacterial community in the soil was shown the predominant strains of Brucellaceae bacterium, Stenotrophomonas maltophilia and Aeromonas hydropila in the soil. Additionally, all three exogenous bacteria of strain TX1, TX2, and OP2 were also predominant in the soil. The bioremediation of OPEOn and its metabolites by the exogenous strains were therefore noted in this research.
關鍵字(中) ★ 界面活性劑
★ 土壤縮模
★ 辛基苯酚
★ 辛基苯酚聚氧乙烯醇
★ 生物復育
★ 生物降解
關鍵字(英) ★ Biodegradation
★ Bioremediation
★ Surfactant
★ Microcosm
★ Octylphenol Polyethoxylates
★ Octylphenol
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 VIII
表目錄 XIV
第一章 前言 1
1.1研究緣起 1
1.2研究之重要性 3
1.3 研究目的與架構 5
第二章 文獻回顧 9
2.1 界面活性劑之定義,分類,性質與使用 9
2.2 界面活性劑之性質 13
2.3 界面活性劑對環境之影響 16
2.4非離子性界面活性劑對環境所造成之污染 17
2.5非離子性界面活性劑之生物分解 18
2.6 烷基苯酚聚氧乙烯醇類界面活性劑(APEOn)之來源與特性 22
2.6.1 APEOn之種類,分布與特性 22
2.6.2 APEOn代謝產物之生成、流佈與環境特性 22
2.6.3 APEOn代謝產物之環境荷爾蒙效應 28
2.6.4 APEOn分解菌 34
2.6.5 APEOn之微生物分解機制 37
2.7 生物復育 .44
2.7.1土壤環境因子對生物復育之影響 .45
2.7.2環境因子對生物分解作用之影響 .51
2.7.3生物復育技術與環境因子控制相關研究現況 54
2.8 土壤縮模設計 59
2.9 本章總結 .59
第三章 材料與方法 .62
3.1 研究流程 .62
3.2 研究材料 64
3.2.1界面活性劑 .64
3.2.2 MSB (Minimal Salts Basal medium). 64
3.2.3菌種來源與特性 .67
3.2.4土壤來源與特性 .73
3.2.5本研究所使用之化學藥品 75
3.2.6本研究所使用之儀器設備 76
3.3 實驗規畫 77
3.3.1 菌株水溶液中生長與特性分析 .77
3.3.2 OPEOn水溶液中分解特性分析 .77
3.3.3 水溶液中菌株生長與OPEOn分解動力分析 78
3.3.4 不同土壤含水率條件下微生物分解OPEOn批次實驗 78
3.3.5 土壤縮模中OPEOn生物復育分析 79
3.3.6 土壤縮模中OPEOn理論礦化量分析 82
3.3.7 土壤縮模中OPEOn生物分解代謝路徑分析 .86
3.3.8 土壤縮模中OPEOn及OP生物復育特性分析 86
3.3.9 土壤縮模中OP生物分解菌相分析 89
3.4 分析方法 .89
3.4.1 水溶液中OPEOn萃取方法 89
3.4.2 水溶液中OPEOn 及其代謝產物濃度之HPLC分析方法 89
3.4.3 水溶液中微生物量OD600分析方法 .90
3.4.4 水溶液中OPEOn中間代謝物LC/MS分析方法 .90
3.4.5 土壤中OPEOn,OP及其可能之代謝產物之萃取 .91
3.4.6 土壤中微生物菌量分析方法 .91
3.4.7 微生物與土壤表面SEM分析方法 .92
3.4.8 數據處理與分析 92
第四章 水溶液中OPEOn之生物降解 .93
4.1 OPEOn分解菌之生長條件分析 93
4.1.1 起始濃度對OPEOn分解菌生長之影響 .93
4.1.2 氮源對OPEOn分解菌生長之影響 97
4.1.3 pH對OPEOn分解菌生長之影響 101
4.1.4 外添加H2O2 .104
4.1.5 OPEOn分解菌生長動力分析 108
4.2水溶液中OPEOn之降解 .111
4.2.1起始濃度對OPEOn降解之影響 111
4.2.2氮源對OPEOn降解之影響 114
4.2.3 pH對OPEOn降解之影響 118
4.3 水溶液中OPEOn生物分解路徑分析 .120
4.4 本章總結 126
第五章 土壤縮模中OPEOn生物復育特性分析 127
5.1 土壤含水率對OPEOn生物復育效果之影響 .127
5.2 土壤中OPEOn之生物復育評估 128
5.2.1 土壤通氣對OPEOn生物降解之影響 .129
5.2.2 溫度對OPEOn生物降解之影響 131
5.2.3 外添加菌對OPEOn生物降解之影響 134
5.2.4 不同OPEOn起始濃度對OPEOn生物復育之影響 .142
5.2.5 不同外添加菌量對OPEOn生物復育之影響 146
5.2.6 不同外添加菌對OPEOn生物復育之影響 151
5.3 土壤中OP之累積 157
5.3.1 土壤縮模曝氣對OP累積之影響 .157
5.3.2 土壤縮模溫度對OP累積之影響 .158
5.3.3 土壤縮模中不同微生物組成對OP累積之影響 160
5.3.4 土壤縮模中不同外添加菌對OP累積之影響 .164
5.4 土壤中OP之生物復育效果之評估 166
5.4.1 不同OPEOn分解菌對OP生物復育影響 166
5.4.2不同OP分解菌對OP生物復育影響 170
5.5 土壤縮模中OPEOn 及OP生物復育之菌相變化 .179
5.6 土壤原生菌OPEOn生物降解路徑之探討 187
5.7 本章總結 199
第六章 結論與建議 .201
6.1 結論 ..201
6.2 建議 ..203
參考文獻 205
附錄一 226
附錄二 227
附錄三 228
參考文獻 王一雄、陳尊賢、李達源。(1993)。土壤污染學。國立空中大學印行。第48-156頁。
王正雄、張小萍、黃壬瑰、李宜樺、王世冠、洪文宗、陳珮珊。(2002)。環境荷爾蒙-壬基苯酚殘留調查及其對雄鯉魚生理效應之研究。環境檢驗所環境調查研究年報9。第291-312頁。
王正雄。(2000)。環境荷爾蒙-地球村二十一世紀之熱門課題。環境檢驗。第29期。第6-14頁。
王鳳英 譯。(1998)。界面活性劑的原理與應用。高立圖書。第233-366頁。
江晃榮。(1998)。環境荷爾蒙-人類的危機?轉機?。科學教育。第8期。第7-9頁。
吳東傑、李芸玫、李靜瑤 譯。(1999)。失竊的未來。先覺出版社。第164-183頁。
李俊福、廖寶玫、張淑芬。(1995)。土壤與廢棄物微量分析技術研究(子計畫三)-長半生期毒性含有機氯農藥之層析質譜分析方法之建立。行政院環境保護署研究報告。第11-15頁。
官長慶。(1994)。界面活性劑與皮膚之作用。界面科學會誌。第十七卷。第二期。第35-41頁。
高郁美。(1994)。美、日、歐界面活性劑市場概況。化工資訊。第二期。第66-72頁。
張有義、郭蘭生。(1997)。膠體與界面化學入門。高立圖書公司。第62-69頁
張萬權。(1992)。土壤污染之微生物復育法。防治技術月刊。第116-126頁。
曾迪華、黃雪莉、陳錫金、宋秉育、謝孝正。(2004)。土壤中辛基苯酚聚氧乙烯醇與辛基苯酚生物分解及微生物菌群之研究。第二屆土壤與地下水技術研討會。台南。
黃雪莉、鄭振利、陳錫金、曾迪華。(2002)。聚乙二醇基酚醚類界面活性劑Triton X-100在土壤中之生物分解。第二屆環境荷爾蒙及持久性有機污染物研討會論文集。第114-124頁。
陳永仁、張皇珍、秦美珍。(1997)。現階段土壤污染防治工作。第五屆土壤污染防治研討會論文集。第1-17頁。
陳瑞玲。(1996)。不同界面活性劑對土壤及底泥吸附非離子性有機化合物之影響。中央大學環境工程研究所碩士論文。第14-45頁。
陳錫金、曾迪華、黃雪莉、楊淑君、林奕成、李俊福。(2001)。 Pseudomonas sp. 分解界面活性劑TritonX-100之環境因子探討。第七屆海峽兩岸環境保護學術研討會論文集。第884-889頁。
陳錫金、黃雪莉、曾迪華、郭家倫、謝孝正。(2003)。土壤縮模中辛基苯酚聚乙氧基醇類界面活性劑Triton X-100生物分解性之探討。第一屆土壤與地下水技術研討會。
朝京寧。(1993)。界面活性劑相關資訊介紹。化工資訊。第84-92頁。
楊琇瑩。(2000)。環境荷爾蒙物質對水生生物的影響。環境荷爾蒙研討會論文集。生技中心。第43-49頁。
楊嘉蓁。(2001)。Triton X-100分解菌之分離與分解酵素之特性研究。國立中央大學生命科學研究所碩士論文。第36-39頁。第45-51頁。
廖明隆 譯。(1994)。界面化學與界面活性劑。文原書局。第13-35頁。
趙承琛。(1998)。界面科學基礎。復文書局。
盧至人、陳思增。(1997)。土壤中有機污染物之生物技術處理。第五屆土壤污染防治研討會論文集。第143-168頁。
謝孝正。(2004)。Pseudomonas putida TX2分解辛基苯酚聚氧乙烯醇及其雌激素活性代謝物之研究。國立中央大學生命科學研究所碩士論文。第26-70頁。
Ahel, M. and Giger, W., (1993), Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 26, 1471-1478.
Ahel, M., Mcevoy, J. and W. Giger., (1993), Bioaccumulation of the lipophilic metabolites of nonionic surfactants in fresh-water Organisms. Environ. Pollut. 79, 243-248.
Allard, A. S. and Neilson, A., (1997), Bioremediation of organic waste sites: A critical review of microbiological aspects. Int. Biodeterior. Biodegrad. 39, 253-285.
Auger, R. L., Jacobson, A. M. and Domach, M. M., (1995), Effect of nonionic surfactant addition on bacterial metabolism of naphthalene: Assessment of toxicity and overflow metabolism potential. J. of hazard. materials, 43, 263-272.
Baker, K. H. and Herson, D. S., (1994), Bioremediation. Environmental Microbiology Associates, Inc. Harrisburg, Pennsylvania, pp. 11-16.
Balba, M. T., Al-Awadhi, N. and Al-Daher, R., (1998), Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J. Microbiol. Methods, 32, 155-164.
Ball, H. A., Reinhard, M. and McCarty, P. L., (1989), Biotransformation of halogenated and nonhalogenated octylphenol polyethoxylate residues under aerobic and anaerobic conditions. Environ. Sci. Technol. 23, 951-961.
Barberio, C., Pagliai, L., Cavalieri, D. and Fani, R., (2001), Biodiversity and horizontal gene transfer in culturable bacteria isolated from activated sludge enriched in nonylphenol ethoxylates. Res. Microbiol. 152, 105-12.
Bartholomew, B., Dodgson, K. S. and Gorham, S. D., (1978), Purification and properties of the S1 secondary alkylsulphohydrolase of the detergent-degrading micro-organism, Pseudomonas C12B. J. of Biochem. 169, 659-667.
Bateman, T. J., Dodgson, K. S. and White, G. F., (1986), Primary alkylsulphatase activities of the detergent-degrading bacterium Pseudomonas C12B. J. of Biochem. 236, 401-408.
Batzing, B. L., (2002), Microbiology, An Introduction. Thomson Learning Inc. Stamford, USA, pp. 50-71.
Blackburn. M. A., Kirby, S. J. and Waldock, M. J., (1999), Concentrations of alkylphenol polyethoxylates entering UK estuaries. Mar. Pollut. Bull. 38, 109–18.
Blackburn, M. A. and Waldock, M. J., (1995), Concentration of alkylphenols in rivers and estuaries in England and Wales, Water Res. 29, 1623-1629.
Bohlen, P. J. and Edwards, C. A., (1995), Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol. Biochem. 27, 341-348.
Boopathy, R. and Manning, J., (1999), Surfactant-enhanced bioremediation of soil contaminated with 2,4,6-trinitrotoluene in soil slurry reactors. Res. note 6, 119-124.
Bouwer, E. J. and Zehnder, J. B., (1993), Bioremediation of organic compounds-putting microbial metabolism to work. Trends in Biotech. 11, 360-367.
Caldwell, D. R., (1995), Microbial physiology and metabolism. Wm. C. Brown publishers. New York, pp. 48-65.
Cano, M. L. and Dorn, P. B., (1996), Sorption of two model alcohol ethoxylate surfactants to sediments. Chemosphere 33, 981-994.
Caplan, J. A., (1993), The worldwide bioremediation industry: Prospects for profit. Trends in Biotech. 11, 320-324.
Carriere, P. P. and Mesania, F. A., (1995), Enhanced biodegradation of creosote contaminated soil. Waste Manag. 15, 579-583.
Chawla, S. and Lenhart, S. M., (2000), Application of optimal control theory to bioremediation. J Compu. Appl. Math. 114, 81-102.
Chen H. J, Huang, S. L. and Tseng, D. H., (2004), Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms. Environ. Technol. 25, 201-210.
Chen, W., Bruhlmann, F., Richins, R. D. and Mulchandani, A., (1999), Engineering of improved microbes and enzymes for bioremediation. Current Opin. in Biotech. 10, 137-141.
Chiou, C. T., Poter, P. E. and Schmedding, D. W., (1993), Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 17, 227-231.
Cho, B. H., Chino, H., Tsuji, H. Kunito, T. and Nagaoka, K., (1997), Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment-materials. Chemosphere 35, 1599-1611.
Choori, U. N., Scamehorn, J. E., O’Haver, J. H., and Harwell, J. H., (1998), Removal of volatile organic compounds from surfactant solutions by flash vacuum stripping in a packed column. GWMR 12, 157-165.
Chu, K. H. and Alvarez-Cohen, L., (1998), Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. Appl.. Environ. Microbiol. 64, 3451-3457.
Cole, J., (1993), Controlling environmental nitrogen through microbial metabolism. Trends in Biotech. 11, 368-372.
Cookson, J. T., (1995), Bioremediation engineering, design and application. McGram-Hill, Inc. New York, pp. 162-168.
Corcia, A. D., (1998), Characterization of surfactants and their biointermediates by liquid chromatography-mass spectrometry. J. Chromatog. 794, 165-185.
Corti, A., Frassinetti, S., Vallini, G., D’Antone, S., Fichi, C. and Solaro, R., (1995), Biodegradation of nonionic surfactant . I. Biotransformation of 4-(-1-nonyl) phenol by a Candida matltosa isolate. Environ. Pollut. 90, 83-87.
Cserhati, T. and Forgacs, E., (1997), Separation and quantitative determination of non-ionic surfactants used as pesticide additives. J. of Chromatog. 774, 265-279.
Dachs. J., Van Ry, D. A. and Eisenreich, S. J., (1999), Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the lower Hudson River estuary. Environ. Sci. Technol. 33, 2676–2689.
Davis, J. W. and Madsen, S., (1996), Factors affecting the biodegradation of toulene in soil. Chemosphere 33, 107-130.
Day, S. M., (1993), US environmental regulations and policies-Their impact on the commercial development of bioremediation. Trends in Biotech. 11, 324-328.
Deitsch J. J. and Smith J. A., (1995), Effect of Triton X-100 on the rate of trichloroethene desorption from soil to water. Environ. Sci. Tech. 21, 1069-1080.
Dekany, I., Szekeres, M, Marosi, T., Balzes, J, and Tombacz, E., (1994), Interaction between ionic surfactants and soil colloid: Adsorption, wetting and structural properties. Colloid Polymer Sci. 95, 73-90.
Devinny, J. S. and Islander, R. L., (1989), Hazard waste. J. of Hazard. Materials 6, 421-425.
Di Corcia, A., Costantino, A., Crescenzi, C., Marinoni, E. and Samperi, R., (1998), Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environ. Sci. Technol. 32, 2401-2409.
Dinelli, G., Vicari, A. and Accinelli, C., (1998), Biodegradation and bioremediation: Degradation and side effects of three sulfonylurea herbicides in soil. J. Environ. Qual. 27, 1459-1464.
Ding, W.H. and Wu, C.Y., (2000), Determination of estrogenic nonylphenol and bisphenol A in river water by solid phase extraction and gas chomatography-mass spectrometry. J. Chin. Chem. Soc. 47, 1155-1160.
Ding, W.H. and Tzing, S.H., (1998), Analysis of nonylphenol polyethoxylates and their degradation products in river water and sewage effluent by gas chromatography- ion trap (tandem) mass spectrometry with electron impact and chemical ionization. J. Chromatog. 824, 79-90.
Ding, W.H., Tzing, S.H. and Lo, J.H., (1999), Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere 38, 2597-2606.
Ducrocq, V., Pandard, P. B., Hallier-Soulier, S., Thybaud, E. and Truffaut, N., (1999), The use of quantitative PCR, plant and earthworm bioassays, plating and chemical analysis to monitor 4-chlorobiphenyl biodegradation in soil microcosms. Appl. soil ecol. 12, 15-27.
Edwards, D. A. Adeel, Z. and Luthy, R. G., (1994), Distribution of non-ionic surfactant and phenanthrene in a sediment/aqueous system. Environ. Sci. Tech. 28, 1550-1560.
Ekelund, R., Granmo, A., Magnusson, K., Berggren, M. and Bergnam, A., (1993), Biodegradation of 4-nonylphenol in seawater and sediment. Environ. Pollut. 79, 59-61.
Feigel, B. J. and Knackmuss, H. J., (1988), Bacterial catabolism of surfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol. Letters 55, 113-118.
Ferguson, P. L., Iden, C. R. and Brownawell, B. J., (2001), Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ. Sci. Tech. 35, 2428-2435.
Franska, M., Franski, R., Szymanski, A. and Lukaszewski, Z., (2003), A central fission pathway in alkylphenol ethoxylate biodegradation. Water Res. 37, 1005-1014.
Field, J.A. and Reed, R.L., (1996), Nonylphenol polyethoxy carboxylate metabolites of nonionic surfactants in us paper-mill effluents, municipal sewage-treatment plant effluents and river waters. Environ. Sci. Tech. 30, 3544-3550.
Fredeen, A. L., Koch, G. W. and Field, C. B., (1998), Influence of fertilization and atmospheric CO2 enrichment on ecosystem CO2 and H2O exchanges in single- and multiple-species grassland microcosms. Environ. Experi. Botany 40, 147-157.
Fujii, K., Yamamoto, R., Tanaka, T., Hirakawa, T. and Kikuchi, S., (2004), Potential of a new biotreatment: Sphingomonas cloacae S-3T degrades nonylphenol in industrial wastewater. J. Ind. Microbiol. Biotech. 30, 531-535.
Gerstl, Z., Sluszny, C., Alayof, A. and Graber, E.R., (1997), The fate of terbuthylazine in test microcosms. Sci. of the Total Environ. 196, 119-129.
Gibson, D. T., (1993), Biodegradation, biotransformation and the Belmont. J. Ind. Microbiol. 12, 1-12.
Gibson, D. T. and Subramanian, V., (1984), Microbial degradation of aromatic hydrocarbons. In D. T. Gibson (ed.), Microbial degradation of organic compounds. Marcel Dekker, Inc. New York, pp. 181-252.
Giger, W., Brunnen, P. H. and Schaffner, C., (1984), 4-nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225, 623-625.
Ginkel, C. G., (1996), Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7, 151-164.
Goloub, T. P., Koopal, L. K. and Bijsterbosth, B. H., (1996), Adsorption of cation surfactants on silica, Surface Charge Effect. Langmuir 12, 3188-3194.
Grathwohl, P. and Totsche, K. U., (1999), Symposium No HSA8: Natural Attenuation and Instrinsic Bioremediation. Phys. Chem. Earth (B) 24, 493-503.
Griffin, D. M., (1981), Water and microbial stress, Adv. in Microbial. Ecol. 15, 91-136.
Gu, T., Zhu, B. T. and Rupprecht, H., (1992), Srufactant adsorption and surface micellization. Prog. Colloid Polym. Sci. 88, 74-85.
Haigh, S. D., (1996), A review of the interaction of surfactants with organic contaminants in soil. Sci. of the total Environ. 185, 161-170.
Haimi, J., (2000), Decomposer animals and bioremediation of soils. Environ. Pollut. 107, 233-238.
Harayama, S., Kok, M. and Neidle, E.L., (1992), Functional and evolutionary relationships among diverse oxygenases. Annual Rev. Microbiol. 46, 565-601
Harayama, S., Wasserfallen, A. , Cerdan, P. and Rekik, M., (1992), Mutation modification of the substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid PWWO of Pseudomonas putida. In American society for microbial. E. Galli, S. Siliver, and B. Witholt(ed.). pp. 223-230.
Harries, J.E., Sheahan, D.A., Jobling, S., Matthiessen, P., Neall, M., Sumpter, J.P., Taylor, T. and Zaman, N., (1997), Estrogenic activity in five United-Kingdom rivers detected by measurement of vitellogenesis in caged male trout. Environ. Toxicol. Chem. 16, 534-542.
Harwell, J. H., Sabatini, D. A., and Knox, R. C., (1999), Surfactants for ground water Remediation. Colloid and Surface A 151, 255-268.
Hauthal, H. G., (1992), Trends in surfactants. Chim Oggi. 10, 9-13.
Hawrelak, M., Bennett, E. and Metcalfe, C., (1999), The environmental fate of the primary degradation products of alkylphenol ethoxylates surfactants in recycled paper sludge. Chemosphere 39, 745-752.
Heitzer, A. and Sayler, G. S., (1993), Monitoring the efficacy of bioremediation. Trends in Biotech. 11, 334-344.
Hellgren, A., Weissenborn, P. and Holmberg, K., (1999), Surfactants in water-borne paints. Progr. in Organic Coatings 35, 79-87.
Hideaki M., Masuda, N., Fujiwara, Y., Ike, M. and Fujika, M., (1994), Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01. Appl. Environ. Microbiol. 60, 2265-2271.
Huang, S. L. and Gibson, D. T., (1993), Biochemical and genetic studies of toluene dioxygenase from Pseudomonas putida. Proceedings of Seminar on Biochemical Engineering, pp. 39-42.
Huang, S. L., Yang, C. J., Guo, G. L. and Chou, S. H., (2004), Isolation, identification and properties of bacterial strains degrading octylphenol polyethoxylates. Taiwan Journal of Agricultural Chemistry and Food Science 42, 356-365.
Huesemann, M. H. and Moore, K. O., (1994), Hydrocarbon bioremediation, Lewis Publisher Inc., Boca Raton, New York, pp. 58.
Hurst, J., (1996), Prepare Bed Bioremediation as Affected by Oxygen concentration in Soil Gas. Utah State University, M. S. Thesis, Logan, UT. pp. 53-58.
Isobe, T., Nishiyama, H., Nakashima, A. and Takada, H., (2001), Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ. Sci. Technol. 35, 1041-1049.
Jafvert, C. T., (1991), Sediment and saturated-soil-associated reaction involing an anionic surfactant. 2. Partition of PAHs Compound amoung Phased. Environ. Sci. Technol. 25, 1039-1045.
Jimenez, E., Martin, M. J. and Camazano, M. S., (1996), Pesticide adsorption in a soil-water system in the presence of surfactants. Chemosphere 32, 1771-1782.
Jobling, S., Nolan, M., Tyler, C.R., Brighty, G. and Sumpter, J.P., (1998), Widespread sexual disruption in wild fish. Environ. Sci. Technol. 32, 2498-2506.
John D. M. and White, G. F., (1998), Mechanism for biotransformation of nonylphenol polyethoxylates to xezoesterogens in Pseudomonas putida. J. Bacteriol. 180, 4332-4338.
Johnson, A.C., White, C., Besien, T.J. and Jurgens, M.D., (1998), The sorption of octylphenol, a xenobiotic estrogen, to suspended and bed-sediments collected from industrial and rural reaches of three English rivers. Sci. of Total Environ. 210, 271-282.
Jordan, R. N., Nichol, E. P. and Cunningham, A. B., (1999), The role of (Bio)surfactant sorption in promoting the bioavailability of nutrients localized at the solid-water interface. Water Sci. Tech. 39, 91-98.
Kao, C. M. and Prosser, J., (1999), Intrinsic bioremediation of trichloroethylene and chlorobenzene: Field and laboratory studies. J. Hazard. Materials B 69, 67-79.
Karickhoff, S. W., Brown, D. S., and Scott, T. A., (1979), Sorption of hydrophobic pollutants on natural sediments. Water Res. 13, 241-248.
Kerr, R. S., (1989), Bioremediation of contaminated surface soil. Environ. Res. Lab. USEPA/600/9-89/073.
Kim, J. S., Kim, S. J. and Lee, B.H., (2004), Effect of Alcaligenes faecalis on nitrous oxide emission and nitrogen removal in three phase fluidized bed process. J. Environ. Sci. Health A 39, 1791-1804.
Kvestak, R. and Ahel, M., (1994), Occurrence of toxic metabolites from nonionic surfactants in the Krka river estuary. Ecotoxicol. Environ. Saf. 28, 25-34.
La Guardia, M. J., Hale, R. C., Harvey, E. and Mainor, T. M., (2001), Alkylphenol ethoxylate degradation products in land-applied sewage sludge(biosolids). Environ. Sci. Tech. 35, 4798-4804.
Lamber, S. M., (1989), Functional relationship between sorption in soil and chemical structure. J. Argicul. Food Chem. 15, 552-576.
Lee, C., Russell, N. J. and White, G. F., (1995), Rapid screening for bacterial phenotypes capable of biodegrading anionic surfactants: development and validation of a microtitre plate method. Microbiology 141, 2801-2810.
Lee, C., Russell, N. J., White, G. F., (1998), Devolpment and validation of laboratory microcosms for anionic surfactant biodegradation by riverine biofilms. Water Res. 32, 2290-2298.
Lewis M. A., (1990), Chronic toxicities of surfactants and detergent builders to algae, A review and risk assessment. Ecotox. Environ. Saf. 20, 123-140.
Liebeg, E. W. and Cutright, T. J., (1999), The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int. Biodeterior. Biodegra. 44, 55-64.
Lin, G. H., Sauer, N. E. and Cutright, T. J., (1996), Environmental regulations: A brief overview of their application to bioremediation. Int. Biodeterior. Biodegra. 25, 1-8.
Liu, S. and Suflita, J. M., (1993), Ecology and evolution of microbial populations for bioremediation. Trends in Biotech. 11, 344-353.
Liu, Z., Laha, S. and Luthy, R. G., (1995), Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil-water suspension. Water Sci. Tech. 29, 903-913.
Loehr, R. C. and Webster, M. T., (1996), Performance of long-term, field-scale bioremediation Processes. J. Hazard. Materials B 50, 105-128.
Madigan, M. T. and Parker, J., (2003), Brock Biology of Microorganisms. Pearson Education Inc., New York, New York, pp 151-165.
Manzano, M. A., Perales J. A., Sales D. and Quiroza, J. M., (1999), The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water. Water Res. 33, 2593-2600.
Marchesi, J. R., White, G. F., Russell, N. J. and House, W. A., (1997), Effect of river sediment on the biodegradation kinetics of surfactant and non-surfactant compounds. Microbiol. Ecol. 23, 55-63.
Martikainen, E., Haimi, J. Ahtiainen, J., (1998), Effects of dimethoate and benomyl on soil organisms and soil processes - a microcosm study. Appl. Soil Ecol. 9, 381-387.
Midmore, B. R., (1998), Synergy between silica and polyoxythylene surfactants in the formation of O/W emulsions. Colloids and Surfaces A 145, 133-143.
Montgomery-Brown, J., Drewes, J. E., Fox, P. and Reinhard, M., (2003), Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res. 37, 3672-3681.
Naylor, C. G., Mieure, J. P., Adams, W. J., Weeks, J. A., Castaldi, F. J., Ogle, L. D. and Romano, R.R., (1992), Alkylphenol ethoxylates in the environment. J. Am. Oil. Chem. Soc. 69, 695-703.
Nevskaia, D. M. , Ruiz, A. G. and Gonzalez, J. D., (1996), Adsorption of polyoxyethylenic surfactants on quartz, kaolin, and dolomite: A correlation between surfactant structure and surface nature. Colloid and Interface Sci. 181, 571-580.
Nguyen, M. H. and Sigoillot, J. C., (1997), Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation 7, 369-375.
Nielsen, E., Ostergaard, G., Thorup, I., Ladefoged, O. and Jelnes, J.E., (2000), Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates, tricresyl, phosphates and benzoic acid. Danish Environ. Project, pp. 512.
Nimrod, A. C. and Benson, W. H., (1996), Environmental estrogenic effects of alkylphenol ethoxylates. Crit. Rev. Toxicol. 26, 335-364.
Nishio, E., Ichiki, Y., Tamura, H., Morita, S., (2002), Isolation of bacterial strains that produce the endocrine disruptor, octylphenol diethoxylates, in paddy fields. Biosci. Biotechnol. Biochem. 66, 1792-1798.
Orth, R. G., Powell, R. L., Kutey, G. and Kimerle, R. A., (1995), Impact of sediment partition methods on environmental safety assessment of surfactants. Environ. Toxic. Chem. 14, 337-343.
Osburn, Q. W. and Benedict, J. H., (1996), Polyethoxylate alkylphenol: relationship of structure to biodegradation mechanism. J. Am. Oil. Chem. Soc. 43, 143-146.
Parts, D., Ruiz, F., Vazquez, B. and Pastor, M. R., (1997), Removal of anionic and nonionic surfactants in a waterwater treatment plant with anaerobic digestion. A comparative study. Water Res. 31, 1925-1930.
Patoczka, J. and Pulliam, G. W., (1990), Biodegradation and secondary effluent toxicity of ethoxylated surfactants. Water. Res. 24, 965-972.
Pennell, K. D. and Howell, D. P., (1999), Evaluation of surfactants for the enhancement of PCB dechlorination in soils and sediments. Environmental Biotechnologies, Inc. Http://maven.gtri.gatech.edu/hsrc/html/pennell.html.
Planas, C., Guadayol, J. M, Droguet, M., Escalas, A., Rivera, J., and Caixach, J., (2002), Degradation of polyethoxylated nonylphenols in a sewage treatment plant. Quantitative analysis by isotopic dilution-HRGC/MS. Water Res. 36, 982-988.
Pope, D. F. and Matthews, J. E., (1993), Bioremediation using the land treatment concept. USEPA/600/R-93/164.
Qwen, S. A., Russell, N. J., and House, W. A., (1997), Re-evaluation of hypothesis that biodegradable surfactants stimulate surface attachment of competent bacterial. Microbiology 143, 3649-3659.
Rittmann, B.E., McCarty, P.L., (2001), Environmental Biotechnology: Principles and Applications. McGraw Hill Inc, New York. pp. 153-164.
Roch, F. and Alexander, M., (1995), Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxico. And chem. 14, 1151-1158.
Roig, M. G., Pedraz, M. A. and Sanchez, J. M., (1998), Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria I. Pseudomonas C12B. J. of molecul. catalysis 4, 253-270.
Romantschuk, M., Sarand, I., Petanen, T., Peltola, R., Jonsson -Vihanne, M., Koivula, T., Yrjala, K. and Haahtela, K., (2000), Means to improve the effect of in-situ bioremediation of contaminated soil: An overview of novel approaches. Environ. Pollut. 107, 179-185.
Rosen, M. J., (1978), Surfactants and interfacial phenomena. 1st ED, John and Wiley & Suns Inc. New York, pp. 142-158.
Rudel, R. A., Melly, S. J., Geno, P. W., Sun, G. and Brody, J.G., (1998), Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on Cape Cod, Massachusetts. Environ. Sci. Technol. 32, 861-869.
Russell, N. J. and White, G. F., (1994), Biodegradation of anionic surfactants and related molecules. Biochem. Microbial. Degrada. 14, 143-177.
Sato H., Shibata A., Wang Y., Yoshikawa H. and Tamura H., (2003), Charecterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profile of uniform octylphenol polyethoxylate in 18O-labeled water. Biomacromoleculaes 4, 46-51.
Sayler, G. S. and Blackburn, J. W., (1990), In agricultural and synthetic polymers. J. E. and Swift 14, 13-32.
Scott, M. J., and Jones, M. N., (2000), Review-The biodegradation of surfactants in the environment. Biochimita et Biophysica Acta 1508, 235-251.
Servos, M.R., (1999), Review of the aquatic toxicity estrogenic responses bioaccumulation of alkylphenols and alkylphenol polyethoxylate. Water Qual. Res. J. Canada 34, 123-177
Sharma, R., (1995), Surfactant adsorption and surfactant solubilisation. Am. Chem. Soc. Symposium Series, pp. 615-619.
Shaw, L. J. and Burns, R. G., (1998), Biodegradation-transport interactions of pulse applied 2,4-D in repacked soil column microcosms. J. Environ. Qual. 27, 1472-1478.
Sims, R. C., (1990), Soil remediation techniques at uncontrolled hazardous waste site. J. of Air Waste Manag. 40, 703-732.
Simkins, S.; Alexander, M., (1984), Models for mineralization kinetics with the variables of substrate concentration and population density. Appl. Environ. Microbiol. 47, 1299-1306.
Skladany, G.J., Baker, K.H., (1994), Laboratory biotreatability studies. McGraw Hill, Inc. New York, pp. 24-28.
Smith, M. R., (1990), The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1, 191-206.
Snukiskis, J. J., Kauspediene, D. V. and Gefeniene, A. J., (1999), Simultaneous removal of nonionic surfactant and heavy metal(II). Water Res. 33, 2978-2982.
Snyder, S. A., Keith, T. L., Verbrugge, D. A., Snyder, E. M., Gross, T. S., Kannan, K. and Giesy, J.P., (1999), Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ. Sci. Technol. 33, 2814-2820.
Soares, A., Guieysse, B., Delgado, O. and Mattiasson, B., (2003), Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol. Letters 25, 731-738.
Soderberg, I., Drummond, C. J., Furlong, D. N. Godkin, S. and Matthews, B., (1995), Non-ionic sugar-based surfactants: Self assembly and air/water interfacial activity. Colloids and Surfaces A 102, 91-97.
Stephen, J. R. and Macnaughton, S. J., (1999), Developments in terrestrial bacterial remediation of metals. Current Opinion Biotechnol. 10, 230-233.
Stoner, D. L., (1994), Biotechnology for treatment of hazardous waste. Boca Raton, FL:CRC Press. pp. 142-148.
Suen, W. C. and Gibson, D. T., (1993), Isolation and preliminary characterization of the subunits of naphthalene dioxygenase from Pseudomonas putida NCIB9816-4. J. Bacteriol. 175, 5877-5881.
Sun, S. and Boyd, S. A., (1993), Sorption of nonionic organic compounds in soil-water systems containing petroleum sulfonate-oil surfactants. Environ. Sci. Tech. 27, 1340-1346.
Sun, S. and Inskeep, W. P., (1995), Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant. Environ. Sci. Tech. 29, 903-913.
Swisher R. D., (1987), Surfactant biodegradation, 2nd ed. Marcel Dekker, New York, New York, pp. 342-364.
Takamatsu, Y., Nishimura, O., Inamori, R., Sudo, R. and Matsumura, M., (1996), Effect of temperature on biodegradability of surfactants in aquatic microcosm system. Water Sci. Tech. 34, 61-68.
Tanenbaum, D. M., Y. Wang, S. Williams, and P. Sigler., (1998), Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. 95, 5998-6003.
Tanghe, T., Dhooge, W. and Verstraete, W., (1999), Isolation of a bacterial strain able to degrade branched nonylphenol. Appl. Environ. Microbiol. 65, 746-751.
Tanghe, T., Dhooge, W. and Verstraete, W., (2000), Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strains with the xeno-estrogenic octylphenol. Biodegradation 11, 11-19.
Thomas, J. M., Yordy, J. R., Amador, J. A. and Alexander, M., (1986), Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52, 290-296.
Topp E, Starratt A., (2000), Rapid mineralization of the endocrine -disrupting chemical 4-nonylphenol in soil. Environ. Toxicol chem. 19, 313-318.
Totren, G., Kibbey, C. G. and Hayes, K. F., (1997), A multicompount analysis of the sorption of polydisperse ethoxylated non-ionic surfactants to an aquifer materials: Equilibrium sorption behavior. Environ. Sci. Tech. 31, 1171-1177.
USEPA, (1991), Site characterization for subsurface remediation. Office of Research and Development, Washington DC. EPA-826-C-91-042.
USEPA, (1996), A citizen’s guide to bioremediation. EPA-542-F-96-007.
White, D., (1995), The Physiology and Biochemistry of Prokaryotes. 2th edition, Oxford University Press, Inc. New York. pp. 37-56.
White, G. F., (1995), Multiple interactions in riverine biofilms-surfactant adsorption, bacterial attachment and biodegradation. Wat. Sci. Tech. 31, 61-70.
Whited, G. M. and Gibson, D. T., (1990), Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173, 3010-3016.
Wilson, S. C.; Meharg, A. A., (1999), Investigation of organic xenobiotic transfers, partitioning and processing in air-soil-plant systems using a microcosm apparatus. Part I: microcosm development. Chemosphere 38, 2885-2896.
Wisconsin Department of Natural Resources, (1993), Guidance for Design, Installation and Operation of Soil Venting System, PUBL-SW. pp. 85-93.
Yeom, I. T. and Ghosh, M. M., (1998), Mass transfer limitation in PAH-contaminated soil remediation. Water Sci. Tech. 37, 111-118.
Ying, G. G., Williams, B. and Kookana, R., (2002), Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environ. Int. 28, 215-226.
Yoshimura, K., (1986), Biodegradation and fish toxicity of nonionic surfactant. J. Am Oil. Chem. Soc. 63, 1590-1596.
Yuan, S. Y., Yu, C. H. and Chang, B. V., (2004), Biodegradation of nonylphenol in river sediment. Environ. Pollut. 127, 425-430.
Zhang, C., Valsaraj, K. T., Constant, W. D. and Roy, D., (1999), Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub- and supra-critical Micelle concentrations. Water Res. 33, 115-124.
Zylstra, G. J. and Gibson, D. T., (1989), Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264, 14940-14946.
指導教授 曾迪華、黃雪莉
(Dyi-Hwa Tseng、Shir-Ly Huang)
審核日期 2005-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明