博碩士論文 89326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.142.199.191
姓名 曾博榆(Bor-Yu Tzeng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 都市垃圾焚化灰渣調質熔渣取代部份水泥之研究
(Hydration Characteristics of MSWI Ashes Modified Slag Blended Cement)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要係將都市垃圾焚化飛灰、洗滌灰及底灰,並區分三種不同系別(底灰系、洗滌灰系及混合灰系)以不同配比混合進行調質熔融實驗,並將熔渣粉體製作不同取代量之熔渣水泥漿體。本研究除建立都市垃圾焚化灰渣調質熔渣之基本特性外,亦探討不同養護齡期下調質熔渣之卜作嵐反應行為與熔渣水泥漿體之工程材料特性,包括抗壓強度、水化程度、膠體空間比、晶相、物種及微結構變化等。
實驗結果顯示,所得之調質熔渣CaO約27~34%,SiO2約29~39%及Al2O3則約8~23%,而非鈣質化物為 47~67%,大致可符合C級飛灰規範之要求,且接近高爐爐石熟料,具有延長水泥澆鑄工作時間之特性。對90天齡期抗壓強度發展而言,取代量10、20%之洗滌灰系熔渣水泥漿體可超越OPC 1~7 MPa;而底灰系熔渣水泥漿體則可與OPC之抗壓強度發展相當(差值<0.5MPa)。由MIP與膠體空間比分析結果得知,調質熔渣水泥漿體水化產物隨齡期增加而逐漸生成填充孔隙,使總孔隙體積與毛孔體積均逐漸減少,而膠孔則隨齡期增加,顯示熔渣有助於熔渣水泥漿體之緻密化。由XRD及DTA之物種分析得知,熔渣水泥漿體與OPC之水化產物主要為CH、C-S-H及C-A-H,並無明顯差異。TG分析所得結果顯示,熔渣可與CH進行卜作嵐反應,而形成C-S-H膠體或C-A-H鹽類。由NMR分析發現,熔渣水泥漿體之水化程度增加趨勢較純水泥漿體顯著;而聚矽陰離子長度則隨齡期而增加,至齡期90天其值皆大於純水泥漿體,顯示熔渣晚期因卜作嵐反應有助於熔渣水泥漿體內部矽酸鹽類之聚合。以SEM可觀察得熔渣表面與CH進行卜作嵐反應而形成C-S-H膠體,並逐漸成長相互接觸交織成網狀結構,進而提升熔渣水泥漿體之晚期強度。綜合上述結果,熔融處理可將都市垃圾焚化灰渣無害化,且所得熔渣具有材料化之潛力。
摘要(英) This study investigated the pozzolonic reactions and engineering properties of municipal solid waste incinerator (MSWI) ash modified slag blended cements (SBC) with various replacement ratios. The modified slags were characterized by melting the MSWI ash mixtures at 1,400℃ for 30 min. The mixtures were composed of different types of MSWI ash, including fly ash, scrubber ash and bottom ash, with various formulas. Bottom ash and scrubber ash, in general, have higher melting points, and are more energy intensive to melt than fly ash. Therefore, fly ash was used to modify the mixtures. The obtained slags were divided into three series based on the experimental ash mixtures. Following further pulverization, these slags were blended with cement at cement replacement ratios ranging from 10% to 40%. The slags thus obtained were quantified and the characteristics of their SBC pastes examined, including the pozzolanic activity, compressive strength, hydration activity, gel pores, crystal phases, species, and the microstructure at various ages.
The results indicate that the slag contained 27~34% CaO, 29~39% SiO2, and 8~23% Al2O3, and approximately 47~67% non-calcium compounds, thus meeting the ASTM C grade for fly ash, which is similar to that of the blast furnace slag.
The 90-day compressive strength developed by SBC pastes with a 10% and 20% cement replacement by slags generated from the modification of scrubber ash, outperformed that of ordinary Portland cement(OPC) by 1-7 MPa, whereas the slags generated from the modifications of bottom ash series were comparable to OPC with a difference of less than 0.5MPa.
From the pore size distribution, as shown by the MIP results, it was found that, with increasing curing ages, the gel pores increased and the total porosity and capillary pores decreased — a result that shows that hydrates had filled the pores.
XRD and DTA species analyses indicated that the hydrates in SBC pastes were mainly CH, the calcium silicate hydrate C-S-H(C-S-H) gel, and C-A-H salts, like those found in OPC paste. TG analysis also indicated that the slag reacted with CH to form C-S-H and C-A-H. The average length (in terms of the number of Si molecules) of linear polysilicate anions in C-S-H gel, as determined by NMR, indicated an increase in all SBC pastes with increasing curing age, which outperformed that of OPC at 90 days. The generation of C-S-H gel, with intersections forming a network structure, as observed by SEM from the surface reaction with CH, also indicated the later development of strength in SBC pastes enhanced by the slag. It can be concluded from the study results that MSWI ash can be modified and processed by melting to recover reactive pozzolanic slag, which may be used in SBC to partially replace cement.
關鍵字(中) ★ 焚化灰渣
★ 熔融
★ 熔渣
★ 卜作嵐反應
★ C-S-H膠體
關鍵字(英) ★ pozzolanic activity
★ slag
★ Incinerator residues
★ C-S-H gel
★ melting process
論文目次 目錄
第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1 都市垃圾焚化灰渣來源、特性及產量 3
2-1-1 都市垃圾焚化灰渣來源 3
2-1-2 灰渣之產量 5
2-1-3 灰渣特性 6
2-2 熔融處理 16
2-2-1 熔融處理原理 17
2-2-2 熔融處理應用現況 18
2-2-3 灰渣熔融處理之操作因數 21
2-2-4 熔融處理之效應 23
2-2-5 熔渣資源化 25
2-3 卜作嵐材料 26
2-3-1 卜作嵐材料之反應 27
2-3-2 卜作嵐反應之評估 28
2-3-3 卜作嵐材料之分類 29
2-3-4 卜作嵐材料之應用 30
2-4 水泥之物化特性 35
2-4-1 水泥水化反應機制 36
2-4-2 水泥漿體之巨微觀性質 40
2-5 卜作嵐材料成份對其水化特性之影響 51
2-6 卜作嵐材料品質控制指標 52
第三章 實驗材料與方法 55
3-1 實驗設計 55
3-1-1 都市垃圾焚化灰渣熔融前處理 60
3-1-2 熔融試驗條件配置 60
3-1-3 熔渣水泥漿體試驗條件配置 62
3-2 實驗材料與設備 64
3-2-1 實驗材料 64
3-2-2 實驗設備 65
3-3實驗方法 69
3-3-1 實驗流程 69
3-3-2分析方法 71
第四章 結果與討論 83
4-1 基本性質分析 83
4-1-1 焚化灰渣基本分析 83
4-1-2 熔渣基本分析 89
4-2 熔渣水泥漿體之工程性質 96
4-2-1 凝結行為 96
4-2-2 卜作嵐活性指數 97
4-2-3 抗壓強度發展 98
4-3 熔渣水泥水化程度與膠體空間比發展 113
4-3-1 水化程度分析 113
4-3-2 膠體空間比分析 118
4-4 熔渣水泥漿體孔隙結構分析 123
4-4-1 孔隙大小分佈 123
4-4-2 孔隙體積分佈 127
4-5 熔渣水泥漿體水化產物之變化 131
4-5-1 X光粉末繞射分析 132
4-5-2 熔渣水泥漿體DTA/TGA分析 136
4-6 熔渣水泥漿體NMR分析 145
4-6-1 熔渣水泥漿體特徵峰變化 145
4-6-2 熔渣水泥漿體水化程度之變化 151
4-6-3 熔渣水泥漿體聚矽陰離子長度之改變 154
4-7 熔渣水泥漿體之SEM觀察 154
第五章結論與建議 160
5-1 結論 160
5-2 建議 162
參考文獻 163
圖目錄
圖 2 - 1 灰渣來源示意圖 4
圖 2 - 2 超冷現象示意圖 18
圖 2 - 3 熔融處理形成Si-O之網目構造 18
圖 2 - 4 熔渣三成分熔流點溫度分佈圖 22
圖 2 - 5 卜作嵐材料應用策略 30
圖 2 - 6 CaO -Al2O3-SiO2三元系相圖(Lea,1956) 36
圖 2 - 7 單礦物之水化速率 37
圖 2 - 8 水化機制:(a)滲透模型示意圖;(b)結晶模型示意圖 38
圖 2 - 9 水化程度、孔隙及強度之關係 40
圖 2 - 10 膠體-空間比、水化程度及毛細孔與抗壓強度之關係 40
圖 2 - 11水泥水化過程中水化產物之形成關係 41
圖 2 - 12 水泥漿體水化階段微結構之示意圖 45
圖 2 - 13 各水化產物含量隨時間之變化 45
圖 2 - 14 水灰比與水化程度對強度之影響(Mehta,1986) 49
圖 2 - 15 水泥漿體水化生成物微結構與抗壓強度之關係(Jabor,1981) 50
圖 3 - 1 實驗流程圖 56
圖 3 - 2 都市垃圾灰渣調質基本特性分析 57
圖 3 - 3 底灰系熔渣漿體之卜作嵐反應特性 58
圖 3 - 4 洗滌灰系熔渣漿體之卜作嵐反應特性 59
圖 3 - 5 混合灰系熔渣漿體之卜作嵐反應特性 59
圖 3 - 6 各灰渣於三相圖之位置與其所對應之熔流點 61
圖 3 - 7 調質灰渣於三相圖之位置 61
圖 3 - 8 本實驗灰渣採樣點及焚化廠設備圖 64
圖 3 - 9 重金屬總量消化流程 73
圖 3 - 10 毒性特性溶出程式(TCLP)流程圖 73
圖 3 - 11 矽酸鹽之Q0、Q1、Q2、Q3及Q4結構 78
圖 3 - 12 典型DTA分析圖(a)放熱曲線(b)熔融與放熱分解 80
圖 4 - 1 各灰渣篩分析累積分佈圖 84
圖 4 - 2 灰渣電子顯微照片 85
圖 4 - 3 飛灰XRD圖譜 86
圖 4 - 4 底灰XRD圖譜 87
圖 4 - 5 洗滌灰XRD圖譜 87
圖 4 - 6 熔渣XRD圖譜 90
圖 4 - 7 各灰系熔渣之電子顯微鏡照片 91
圖 4 - 8 重金屬於熔融系統之移動概況 95
圖 4 - 9 F熔渣漿體抗壓強度發展圖 100
圖 4 - 10 S1熔渣漿體抗壓強度發展圖 100
圖 4 - 11 S2熔渣漿體抗壓強度發展圖 101
圖 4 - 12 S3熔渣漿體抗壓強度發展圖 101
圖 4 - 13 B1熔渣漿體抗壓強度發展圖 102
圖 4 - 14 B2熔渣漿體抗壓強度發展圖 102
圖 4 - 15 B3熔渣漿體抗壓強度發展圖 103
圖 4 - 16 M1熔渣漿體抗壓強度發展圖 103
圖 4 - 17 M2熔渣漿體抗壓強度發展圖 104
圖 4 - 18 M3熔渣漿體抗壓強度發展圖 104
圖 4 - 19 各熔渣水泥漿體28天相對抗壓強度比較 106
圖 4 - 20 各熔渣水泥漿體90天相對抗壓強度比較 106
圖 4 - 21 熔渣水泥漿體DPE圖 110
圖 4 - 22 熔渣成份對其卜作嵐活性之影響 112
圖 4 - 23 飛灰熔渣水泥漿體之水化程度變化 114
圖 4 - 24 洗滌灰系熔渣水泥漿體之水化程度變化 115
圖 4 - 25 底灰系熔渣水泥漿體之水化程度變化 116
圖 4 - 26 混合灰系熔渣水泥漿體之水化程度變化 117
圖 4 - 27 飛灰熔渣水泥漿體之膠體空間比發展 119
圖 4 - 28 洗滌灰系熔渣水泥漿體之膠體空間比發展 120
圖 4 - 29 底灰系熔渣水泥漿體之膠體空間比發展 121
圖 4 - 30 混合灰系熔渣水泥漿體之膠體空間比發展 122
圖 4 - 31 純水泥漿體孔隙分佈變化 124
圖 4 - 32 F熔渣水泥漿體孔隙分佈變化(取代量20%) 124
圖 4 - 33 S1熔渣水泥漿體孔隙分佈變化(取代量20%) 125
圖 4 - 34 B1熔渣水泥漿體孔隙分佈變化(取代量20%) 125
圖 4 - 35 M3熔渣水泥漿體孔隙分佈變化(取代量20%) 126
圖 4 - 36 純水泥漿體孔隙體積分佈變化 128
圖 4 - 37 F熔渣水泥漿體體積分佈變化(取代量20%) 129
圖 4 - 38 S1熔渣水泥漿體體積分佈變化(取代量20%) 129
圖 4 - 39 B1熔渣水泥漿體體積分佈變化(取代量20%) 130
圖 4 - 40 M3熔渣水泥漿體體積分佈變化(取代量20%) 130
圖 4 - 41 純水泥漿體XRD之X光繞射圖譜 133
圖 4 - 42 F熔渣水泥漿體之X光繞射圖譜(取代量20%) 134
圖 4 - 43 S1熔渣水泥漿體之X光繞射圖譜(取代量20%) 134
圖 4 - 44 B1熔渣水泥漿體之X光繞射圖譜(取代量20%) 135
圖 4 - 45 M3熔渣水泥漿體之X光繞射圖譜(取代量20%) 135
圖 4 - 46 純水泥漿體不同齡期之DTA圖譜 137
圖 4 - 47 飛灰熔渣水泥漿體不同齡期之DTA圖譜(取代量20%) 138
圖 4 - 48 S1熔渣水泥漿體不同齡期之DTA圖譜(取代量20%) 138
圖 4 - 49 B1熔渣水泥漿體不同齡期之DTA圖譜(取代量20%) 139
圖 4 - 50 M3熔渣水泥漿體不同齡期之DTA圖譜(取代量20%) 139
圖 4 - 51 純水泥漿體不同齡期之TG圖譜 140
圖 4 - 52 飛灰熔渣水泥漿體不同齡期之TG圖譜(取代量20%) 141
圖 4 - 53 S1熔渣水泥漿體不同齡期之TG圖譜(取代量20%) 141
圖 4 - 54 B1熔渣水泥漿體不同齡期之TG圖譜(取代量20%) 142
圖 4 - 55 M3熔渣水泥漿體不同齡期之TG圖譜(取代量20%) 142
圖 4 - 56 OPC及取代量20%熔渣水泥漿體隨齡期之CH熱失重變化 143
圖 4 - 57 OPC及取代量20%熔渣水泥漿體隨齡期之膠體熱失重變化 144
圖 4 - 58 純水泥漿體在不同齡期之29Si NMR圖譜 146
圖 4 - 59 F熔渣水泥漿體在不同齡期之29Si NMR圖譜(取代量20%) 147
圖 4 - 60 S1熔渣水泥漿體在不同齡期之29Si NMR圖譜(取代量20%) 148
圖 4 - 61 B1熔渣水泥漿體在不同齡期之29Si NMR圖譜(取代量20%) 149
圖 4 - 62 M3熔渣水泥漿體不同齡期之29Si NMR圖譜(取代量20%) 150
圖 4 - 63 B1熔渣水泥漿體SEM觀察結果(倍率×3.0K) 155
圖 4 - 64 S1熔渣水泥漿體SEM觀察結果(倍率×3.0K) 156
圖 4 - 65 M3熔渣水泥漿體SEM觀察結果(倍率×3.0K) 157
圖 4 - 66 飛灰熔渣水泥漿體SEM觀察結果(倍率×3.0K) 158
圖 4 - 67 熔渣表面受CH侵蝕圖(倍率×3.0K) 159
表目錄
表 2 - 1 焚化灰渣之定義及說明 4
表 2 - 2 典型每公噸垃圾焚化所產生之灰渣量 5
表 2 - 3 都市垃圾焚化處理過程元素分佈 6
表 2 - 4 都市垃圾焚化飛灰之化學主要組成 8
表 2 - 5 都市垃圾焚化飛灰重金屬濃度 9
表 2 - 6 洗滌灰之主要化學組成 11
表 2 - 7 都市垃圾洗滌灰重金屬濃度 12
表 2 - 8 都市垃圾焚化底灰元素組成 14
表 2 - 9 都市垃圾焚化底灰重金屬濃度 15
表 2 - 10 焚化灰渣中間處理技術評估 16
表 2 - 11 日本都市垃圾焚化灰渣熔融廠 20
表 2 - 12 熔融熔渣的利用方式 26
表 2 - 13 礦粉材料之種類與材料 27
表 2 - 14 常見卜作嵐材料之典型組成成份 29
表 2 - 15 卜作嵐物質分類 29
表 2 - 16 卜作嵐材料取代部分水泥之相關文獻整理 31
表 2 - 17 卜作嵐材料取代部分水泥之相關文獻整理(續) 32
表 2 - 18 卜作嵐材料取代部分水泥之相關文獻整理(續) 33
表 2 - 19 卜作嵐材料取代部分水泥之相關文獻整理(續) 34
表 2 - 20 水泥旋窯內各種溫度之化學反應 35
表 2 - 21 單礦物完全水化所產生之水化熱 38
表 2 - 22 水泥水化過程 39
表 2 - 23 水泥漿體水化產物之組成成份與性質 46
表 3 - 1不同灰系調質灰渣設計配比及其代號 62
表 3 - 2 調質熔渣水泥漿體條件配置 63
表 3 - 3 試驗項目及方法 70
表 3 - 4 試驗項目及方法(續) 71
表 3 - 5 XRF參數設定 72
表 3 - 6 XRPD參數設定 76
表 3 - 7 NMR光譜之信號與其原因 79
表 4 - 1 焚化灰渣物化特性 83
表 4 - 2 焚化灰渣篩分析結果 84
表 4 - 3 焚化灰渣之化學組成 86
表 4 - 4 灰渣之重金屬總量 89
表 4 - 5 灰渣重金屬溶出試驗結果 89
表 4 - 6 熔渣物化特性 90
表 4 - 7 熔渣化學成份與其他卜作嵐材料之比較 93
表 4 - 8 熔渣重金屬總量及溶出試驗結果 94
表 4 - 9 調質熔渣不同取代量與新拌漿體凝結時間 96
表 4 - 10 熔渣卜作嵐活性指數試驗結果 97
表 4 - 11 調質熔渣水泥漿體之工程特性彙整 107
表 4 - 12 調質熔渣水泥漿體之工程特性彙整(續) 108
表 4 - 13 比強度分析項目定義 109
表 4 - 14 純水泥漿體之NMR光譜資訊 152
表 4 - 15 飛灰熔渣水泥漿體之NMR光譜資訊 152
表 4 - 16 洗滌灰系熔渣水泥漿體之NMR光譜資訊 152
表 4 - 17 底灰系熔渣水泥漿體之NMR光譜資訊 153
表 4 - 18 混合灰系熔渣水泥漿體之NMR光譜資訊 153
參考文獻 1.Alba, N., Gasso, E., Vazquez, S. Gasso and Baldasano, J. M., “Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation”, Waste Management, Vol. 21, pp. 313-323, 2001.
2.Alba, N., Gasso, S., Lacorte, T. and Baldasano, J. M., “Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems”, Journal of the Air & Waste Managment Association, Vol. 47, pp. 1170-1179, 1997.
3.Arjunan, P., Michael, R. and Della M. Roy, “Silfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”, Cement and concrete research, Vol. 29, No. 8, pp.1305-1311, 1999.
4.Berg, E.R., Neal, J.A., “Municipal solid waste bottom ash as Portland cement concrete ingredient”, Journal of Materials in Civil Engineering, August, pp.168-173, 1998.
5.Buchholz, B.A. and Landsberger, S., “Leaching dynamics studies of municipal solid waste incinerator ash”, Journal of the Air & Waste Management Association, Vol. 45, p.579, 1995.
6.Chengzhi, Z., W. Aiqin, and T. Mingshu, “The Filling Rolf of Pozzolanic Material”, Cement and Concrete Research, Vol. 26, No. 6, pp. 943-947, 1996.
7.Cong, Xiandong and R. James Kirkpatrick, “17O and 29Si MAS NMR study of hydration and the structure of calcium silicate hydrates”, Cement and Concrete Research, 23, pp. 1065-1077, 1993.
8.Derie, R., “A new way to stabilize fly ash from municipal incinerators”, Waste Management, Vol. 16, No. 8, p.711, 1996.
9.Eighmy, T.T., Eusden, J.D., Krzanowski, J.E. and et al., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipctator ash”, Environmental Science & Technology, Vol. 29, No. 3, p.629, 1995.
10.Goldin, A., Bigelow, C., Veneman, P., L.M., “Concentration of metals in ash from municipal solid waste combusters”, Chemosphere, Vol.24, No.3, pp.271-280, 1992.
11.Gong, Y. asn Kirk, D.W., “Behaviour of municipal solid waste incinerator fly ash. I: Gene ral leaching study”, Journal of Hazardous Materials, Vol. 36, p.249, 1994.
12.Hamernik, J.D. and Frantz, G.C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Vol.88, No. 3, p.294, 1991.
13.Hanehara, S., Tomosawa, F., Kobayakawa, M. and Hwang, K.R., “Effects of water/powder ratio, mixing ration of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste”, Cement and Concrete Research, Vol. 31, No. 1, pp.31-39, 2001.
14.Hester, R.E., Harrison, R.M., “Waste incineration and the environment”, The Royal Society of Chemistry, p.49, 1994.
15.Hjelmar, Ole, “Disposal strategies for municipal solid waste incineration residues”, Journal of Hazardous Materials 47, pp.347-350, 1996
16.IAWG(The International Ash Working Group),“Municipal Solid Waste Incinerator Residues”, Elsevier, 1997.
17.Iori, J., Balg, J. and Wiechert, C., “Detoxification of municipal waste incineration residues by vitrification”, ABB Review, Vol. 6-7, p.9, 1995
18.Jakob, A., Stucki, S. and Kuhn, P., “Evaporation of heavy metals during th heat treatment of municipal solid waste incinerator fly ash”, Environmental Science &Technology, Vol. 29, No. 9, p.2429, 1995.
19.Jazairi, B.E. and Illston, J.M., “The hydration fo cement paste vsing the semi-isothermal method of derivative thermogravity”, Cement and Concrete Research, Vol. 10, pp. 361-366, 1980.
20.Jean. Pera., Assefa. Wolde, and M. Chabannet, “Hydraulic Activity of Slags Obtained by Vitrification of Wastes,” ACI Materials Journal, Vol. 93, No. 6, November-December, (1996).
21.Johnson, C.A., Brandenberger, S., and Baccini, P., “Acid Neutralizing capacity of municipal waste incinerator bottom ash”, Environmental Science & Technology, Vol.29, No.1, pp.142-17, 1995.
22.Kida, A., Noma, Y. and Imada, T., “Chemical Speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, Vol. 16, No. 5-6, p.527, 1996.
23.Kirby, C.S., Rimstidt, J.D., “Mineralogy and surface properties of municipal solid waste ash”, Environmental Science & Technology, Vol.27, No.4, pp.652-660, 1993.
24.Kosson, D.S., Sloot, H.A., and Eighmy, T.T., “An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues”, Journal of Hazardous Materials, Vol.47, No. 2-3, pp.43-75, 1996.
25.Lea, F.M., “The chemistry of cement and concrete”, Edward Arnold, London, 1980
26.Lipmma, E., M. Magi, A. Samoson, G. Engelhardt, and A. R. Grimmer, “Structural studies of silicates by solid-state high-reslution 29Si magic angle spinning NMR in solids”, J. Amer. Chem. Soc., Vol. 120, pp. 4889-4893, 1980.
27.Lipmma, E., M. Magi, M. Tavmak,, “A high reslution 29Si NMR study of the hydration of tricalciumsilicate”, Cement and Concrete Reearch, Vol. 12, pp. 597-602, 1982.
28.Makoto, M. and Eiji S., “Solidification of heavy metal-containing sludges by heating with silicate”, Toxic and Hazardous Waste Disposal, Vol. 3, Ann Arbor Science, pp.141-154, 1981.
29.Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P., “Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Vol. 70, No. 1-2, pp. 53-70, 1999.
30.Meima, J.A., Comans, R.N.J., “Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash”, Environmental Scence &. Technology, Vol.32, No.5, pp.688-693, 1998.
31.Mitchell, D.J., Wild, S.DR. and Jones, K.C., “Arrested municipal solid waste incinerator fly ash as a source of heavy metals to the UK environment”, Environmental Pollution, Vol. 76, p.79, 1992.
32.Morf, L.S., Brunner, P.H., “The MSW incinerator as a monitoring tool for waste management”, Environmental Science & Technology, Vol.32, No.12, pp.1825-1831, 1998.
33.Ontiveros, J.T., Clapp, T.L. and Kosson, D.S., “Physical properties and chemical species distributions within municipal waste combuster ashes”, Environmental Progress, Vol. 8, No. 3, p.200, 1989.
34.Pera, J., Coutaz, L., Ambroise, J., Chababbet, M., “Use of incinerator bottom ash in concrete”, Cement and Concrete Research, Vol.27, No.1, pp.1-5, 1997.
35.Pluss, A. and Ferrell, J.R., “Characterization of lead and other heavy metal in fly ash from municipal waste incinerators”, Hazardous waste and Hazardous Materials, 8(4), pp. 275-292 (1991)
36.Pu, X., “Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index”, Cement and Concrete Research, Vol. 29, No. 6, pp.951-955, 1999.
37.Reimann, D.O., “Heavy metal in domestic refuse and their distribution in incinerator residues”, Waste Management & Research, Vol.7, pp.57-62, 1989.
38.Richers, U. and Birnbaum, L., “Detailed investigations of filer asher from c municipal solid waste incineration”, Waste Management & Research, Vol. 6, p.227, 1998.
39.Sakai, S. and Hiraoka, M., “Municipal solid waste incinerator residue recycling by thermal processes”, Waste Management, Vol. 20, No. 2-3, pp.249-258, 2000.
40.Sanchez, M. I., and M. Frias, “The Pozzolanic Activity of Different Materials, Its Influence On The Hydration Heat In Mortars”, Cement and Concrete Research, Vol. 26, No. 2, pp. 203-213, 1996.
41.Tanaka, T. et al., “Demonstration of a multi-purpose incineration melter system”, ANS International Topical Meeting, 1986.
42.Taylor, H.F.W., “Cement chemistry”, Thomas Telford, 1997.
43.van der Sloot, H.A., Kosson, D.S. and Hjelmar, O., “Characteristics, treatment and utilization of residues from municipal waste incineration”, Waste Management, Vol. 21, No. 8, pp.753-765, 2001.
44.Wang, S. W., and K. L. Scrivener, “Hydration Products of Activated Slag Cement”, Cement and Concrete Research, Vol. 25, No. 3, pp. 561-571, 1995.
45.Wiles, C.C., “Municipal solid waste combustion ash: State-of-the-knowledge”, Journal of Hazardous Materials, Vol.47, pp.325-344, 1996.
46.Wunsch, P., Greilinger, C., Bienick, D. and Kettrup, A., “Investigation of the binding of heavy metals in thermally treated residues from waste incineration”, Chemosphere, Vol. 32, No. 11, p.2211, 1996.
47.Young, J.F., Mindess, S., Gray, R. J. and Bentur, A., “The science and technology of civil engineering materials”, Prentice Hall, 1997.
48.Yousuf, M., Mollah, A., Vempati, R.K., Lin, T.C., and Cocke, D.L., “The Interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems”, Waste Management, Vol. 15, No. 2, pp.137-148, 1995.
49.Zhang, M. H., R. Lastra, and V. N. Malhotra, “Rice-Husk Ash paste And Concrete: Some Aspects of Hydration and The Microstructure of The Interfacial Zone Between The Aggregare And Paste”, Cement and Concrete Research, Vol. 26, No. 6, pp. 963-977, 1996.
50.中國建築工業出版社與中國矽酸鹽學會,「矽酸鹽辭典」,1983年4月。
51.王和源,「爐石製成及添加方式對水泥強度的影響」,國立台灣工業技術學院營建技術組碩士論文,1985。
52.王鯤生、孫常榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分布即溶出特性之探討」,第十三屆廢棄物處理技術研討會論文集,高雄市,pp.463-469,1998。
53.王鯤生與李宗彥,「都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為」,碩士論文,國立中央大學環境工程研究所,中壢(2001)。
54.王鯤生與張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1992)。
55.王鯤生與張祉祥,「都市垃圾焚化底灰燒結資源化之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1999)。
56.王鯤生與黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
57.王鯤生與蕭炳欽,「都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1993)。
58.永澤正行,山內泉,村木宏,「都市ごみ燒卻灰の有效利用への取り組み(第1報)」,都市清掃,第48卷,第206號,pp.29-36,1995。
59.池原洋一與鈴木邦雄等,「清掃工廠のフライアツシュの抵抗爐による熔融處理技術時について」,都市清掃,第39卷,第153號,1986。
60.行政院環境保護署統計室編印,「中華民國台灣地區環境統計年報」,2001。
61.李建中、李釗、何啟華與鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物灰渣資源化技術與實務研討會論文集,p.193,1996。
62.村上忠弘與石田貴榮,「污泥熔融に係る指標の檢討」,下水道協會誌,Vol. 26,No. 300,1989。
63.沈永年,林仁益與黃兆龍,「核磁共振解析含飛灰水泥漿體之波索蘭反應」,中國土木水利工程學刊,第五卷,第四期,pp.387-392,1993。
64.汪建民等,「陶瓷技術手冊(下)」,中華民國粉末冶金協會與中華民國產業科技發展協進會,1994。
65.阪本明彥與阪谷正人,「ごみ垃圾燒卻灰前處理實驗」,都市清掃,第51卷,第225號,pp.438-444,1995。
66.酒井伸一,「一般廢棄物燒卻殘渣の性狀とその溶出特性」,都市清掃,第48卷,第208號,pp.438-444,1995。
67.許樹恩與吳泰伯,「X光繞射原理與材料結構分析」,中國材料科學學會,1996。
68.陳清泉、陳振川、袁宏績與詹穎雯,「爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究」,營建研究中心,1987。
69.黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,1986。
70.黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
71.黃兆龍與沈得縣,「高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究」,博士論文,國立台灣工業技術學院,台北(1991)。
72.黃兆龍與林利國,「稻殼灰性質與混凝土材料上之利用」,碩士論文,國立台灣工業技術學院,台北(1989)。
73.黃兆龍與洪文芳,「爐石在混凝土的應用—固態廢料處理研究方案之二」,財團法人台灣營建研究中心,1985。
74.黃兆龍與張建中,「普通水泥添加飛灰水話機理之研究」,國立台灣工業技術學院工程技術研究所營建工程技術組碩士論文,.台北,1987。
75.廉慧珍與童良,「建築材料物相研究基礎」,清華大學出版社,中華人民共和國,(1995)。
76.楊金鐘與吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.43,台北,1996。
77.鈴木孝與藤本忠生,「都市ごみ燒卻殘渣の熔融處理」,都市清掃,第40卷,第159號,1987。
78.廖錦聰,「從日本的經驗談台灣焚化灰渣資源化方向」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.29,台北,1996。
79.鄭文欽,「都市垃圾焚化底灰受鹽類影響重金屬釋出之研究」,淡江水資源及環境工程研究所碩士論文,1995。
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2002-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明